
Gold and Fool’s Gold:
Successes, Failures, and Futures
in Computer Systems Research

Butler Lampson

Microsoft

Usenix Annual Meeting

June 2, 2006

Context: Moore’s Law and Friends

$100/M4 M10 x360Display pixels

$1000/MB/s/mo4 GB/s1,000 x12WAN BW

$1/MB/s1 GB/s100 x18LAN BW

$0.35/GB750 GB1,000 x12Storage (disk)

$20/GIPS2x4 GIPS100 x18Processing

6/2006 cost6/2006
best

10 yearsmonths
for 2 x

Implication: spend hardware to simplify software.
Huge components work (operating system, database, browser)

Better hardware enables new applications.

Complexity goes into software.

What is computing good for?

factories, cars,

robots, smart dust

2010Embodiment

(physical world)

email, airline tickets,
books, movies, Google,
Terraserver

1980Communication
(storage)

nuclear weapons, protein
folding, payroll,
games, virtual reality

1950Simulation

Simulation: Protein Folding

UNFOLDING OF THE
DNA BINDING DOMAIN
OF HIV INTEGRASE

HIV uses proteins to insert
its genetic code into our
DNA. The DNA binding
domain of HIV integrase
(below) is the protein which
HIV uses to grab onto our
DNA such that it can then
connect its genetic code into
ours.

Communication: Maps and Pictures

Embodiment: Roomba Vacuum

256 bytes of RAM, $199

YES
Virtual memory
*Address spaces
*Packet nets
Objects / subtypes
RDB and SQL
*Transactions
*Bitmaps and GUIs
Web
Algorithms

History: What Worked?

NO (Not Yet?)
*Capabilities
*Fancy type systems
Functional programming
*Formal methods
Software engineering
*RPC (except for Web)

*Distributed computing
Persistent objects
*Security
RISC

History: What Worked?

MAYBE

Parallelism (but now we really need it)

Garbage collection

Interfaces and specifications

Reuse / components
Works for Unix filters

Platforms
Big things (OS, DB, browser)

Flaky for Ole/COM/Web services

The Failure of Systems Research

 We didn’t invent the Web

 Why not? Too simple

 Old idea
▬ But never tried

 Wasteful
▬ But it’s fast enough

 Flaky
▬ But it doesn’t have to work

 Denial: It doesn’t scale

 Only from 100 to 100,000,000

The Future: Motherhood Challenges

 Correctness

 Scaling

 Parallelism

 Reuse

 Trustworthiness

 Ease of use

Jim Gray’s challenges

1. The Turing test: win the impersonation game 30% of the time.
• Read and understand as well as a human.

• Think and write as well as a human.

2. Hear and speak as well as a person: speech↔text.

3. See and recognize as well as a person.

4. Remember what is seen and heard; quickly return it on request.

5. Answer questions about a text corpus as well as a human
expert. Then add sounds, images.

6. Be somewhere else: observe (tele-past), interact (tele-present).

7. Devise an architecture that scales up by 106.

8. Programming: Given a specification, build a system that
implements the spec. Do it better than a team of programmers.

9. Build a system used by millions, administered by ½ person.
• Prove it only services authorized users.

• Prove it is almost always available: (out < 1 second / 100 years)

A Grand Challenge:

 A pure computer science problem

 Needs

 Computer vision

 World models for roads and vehicles

 Dealing with uncertainty about sensor inputs,
vehicle performance, changing environment

 Dependability

Reduce highway traffic deaths to zero

What is dependability?

 Formally, the system meets its spec

 We have the theory needed to show this formally

 But doing it doesn’t scale

 And worse, we can’t get the formal spec right

▬ Though we can get partial specs right

▬ “Sorry, can’t find any more bugs.”

 Informally, users aren’t surprised

 Depends on user expectations

▬ Compare 1980 AT&T with cellphones

▬ How well does the market work for dependability?

How much dependability?

 How much do we have? It varies
 As much as the market demands

▬ Is there evidence of market failure?

 Almost any amount is possible
▬ If you restrict the aspirations

▬ In other words, there’s a tradeoff

 How much do we need? It varies
 But safety-critical apps are growing fast

 What’s the value of a life? Wild inconsistency
▬ Look at British railways

 Dependable vs. secure

Measuring dependability

 Probability of failure
 From external events

 From internal malfunction
▬ complexity (LOC☺) good experience (testing etc.)

 Cost of failure
 Injury or death

 External damage
▬ Business interruption
▬ Breakage
▬ Bad PR

 TCO

 What’s the budget? Who gets fired?

Dependability through redundancy?

 Good in its place

 But need independent failures

 Can’t usually get it for software

▬ Example: Ariane 5

 Even harder for specs

▬ The unavoidable price of reliability is simplicity—Hoare

 And a way to combine the results

Dependable No catastrophes

 A realistic way to reduce aspirations

 Focus on what’s really important

 What’s a catastrophe?

 It has to be very serious

 Must have some numeric measure

▬ Dollars, lives? Say $100B, 1000 for terrorism

▬ Less controversial: Bound it by size of CCB

 Must have a “threat model”: what can go wrong

 Probabilities must enter

 But how?

Examples of catastrophes

 USS Yorktown

 Terac 25 and other medical equipment

 Loss of crypto keys

 Destruction of big power transformers

 Are there any computer-only catastrophes?

Misleading examples of catastrophes

 Avionics, nuclear reactors

 Most attention has gone here

 But they are atypical

▬ Lots of stuff has to work

▬ Shutdown is impossible or very complex

 Impossible goals

 Never lose a life.

▬ Maybe OK for radiation

▬ No good for driving

 No terrorist incidents

 No downtime

Catastrophe prevention that hasn’t worked

 Trusted computing base for security

 Electric power grid

 Air traffic control

 The spec said 3 seconds down/year/workstation

Architecture — Catastrophe Mode

 Normal operation vs. catastrophe mode

 Catastrophe mode high assurance CCB

 Catastrophe mode requires

 Clear, limited goals = limited functionality

▬ Hence easier than security

 Strict bounds on complexity

▬ Less than 50k lines of code?

 Catastrophe mode is not a retrofit

Catastrophe mode

 What it does

 Hard stop (radiation therapy)

▬ Might still require significant computing

 Soft stop (driving a car)

▬ Might require a lot of the full functionality, but the
design center is very different

 Drastically reduced function (ship engines)

 How it does it

 Take control, by reboot or hot standby

 Censor (no radiation if limits exceeded)

 Shed functions

Techniques

 Reboot—discard corrupted state

 Shed load

 Shed functions

 Isolate CCB, with minimal configuration

 Transactions with acceptance test
 Approval pages for financial transactions

 Undo and rollback

 Well-tested components
 Unfortunately, successful components are very big

Learning from security

 Perfection is not for this world

 The best is the enemy of the good

 Set reasonable goals

 Dependability is not free

 Customers can understand tradeoffs

 Though perhaps they undervalue TCO

 Dependability is holistic

 Dependability is fractal

Dealing with Uncertainty

 Unavoidable in dealing with the physical world

 Need good models of what is possible

 Need boundaries for the models

 Unavoidable for “natural” user interfaces:
speech, writing, language

 The machine must guess; what if it guesses wrong?

 Goal: see, hear, speak, move as well as a
person. Better?

 Teach as well as a person?

Example: Speech “Understanding”

 Acoustic input: waveform (speech + noise)

 “Features”: compression

 Phonemes

 Words: dictionary

 Phrases: Language model

 Meaning: Domain model

Uncertainty at each stage.

Example: Robots

 Where am I?

 What is going on?

 What am I trying to do?

 What should I do next?

 What happened?

Paradigm?: Probability Distributions

 Could we have distributions as a standard data
type?

 Must be parameterized over the domain (like lists)

 What are the operations?

 Basic problem (?): Given distribution of x,
compute distribution of f(x).

 Hard when x appears twice in f – independence

Conclusions for Engineers

 Understand Moore’s law

 Aim for mass markets

 Computers are everywhere

 Learn how to deal with uncertainty

 Learn how to avoid catastrophe

