
© Jeff Sutherland 1993-2007

Jeff Sutherland, Ph.D.
Co-Creator of Scrum

http://jeffsutherland.com/scrum

The Plan is the Problem!The Plan is the Problem!

© Jeff Sutherland 1993-2007

Jeff Sutherland background
jeffsutherland.com/scrum

Agile Systems Architect since 1986

– CTO/VP Engineering for 9 software companies
– Prototyped Scrum in 4 companies
– Conceived and executed first Scrum at Easel Corp. in 1993
– Rolled out Scrum in next 5 companies

Signatory of Agile Manifesto and founder of Agile Alliance
ScrumMaster Certification World Tour

Jan 10-12 Medco
Jan 25-26 CSM Boston
Jan 29-31 Ulticom
Feb 1-2 CSM Philips Medical
Feb 7-8 CSM Aarhus
Feb 15-16 Constant Contact
Feb 22-23 CSM Ft Myers
Mar 1-2 CSM St. Petersburg, Russia
Mar 5-6 CSM Copenhagen
Mar 8-9 CSM Copenhagen
March 12-13 CSM QCON London
March 22-23 CSM Boston
Apr 3-4 CSM Amsterdam

Apr 18-19 CSM Boston
Apr 25-26 CSM Aarhus
Apr 28-29 Deep Agile with Ron Jeffries Boston
May 7-11 Scrum Gathering Portland
May 17-18 CSM Boston
May 23-24 Scrum Tuning Ft. Meyers
Jun 4-5 CSM Systematic
Jun 6-7 CSM Aarhus
Jun 11-12 CSM Copenhagen
Jun 13 Oresund Agile Copenhagen
Jun 18-19 CSM Oslo
Jun 20-21 CSM Stockholm

© Jeff Sutherland 1993-2007

Plan driven
development

High failure rate
Produces software that
sucks
– Fails to fit customer

needs
– High defect rate

Over 50% waste
Delays time to market
Poor working
environment

High success rates
Produces software that
meets customer needs
Minimal waste
Accelerates early
revenue
Energized working
environment

Value driven
development

© Jeff Sutherland 1993-2007

Projects fail (CHAOS report 2004: Standish group)

Mainly caused by lack of:
– User Involvement,
– Executive Support and
– Clear Business Objectives.

Plan based failure rates

© Jeff Sutherland 1993-2007

Unplanned software case study

> $1B project
> 30 million lines of code,
8,000 person-years of development for
one release
No plan
No specification
Much higher quality than competitors
Better fit to user needs

© Jeff Sutherland 1993-2007

How to produce software that
sucks …

With the Waterfall approach, a great idea late in the
development cycle is not a gift, it’s a threat.

– Pete Deemer, Chief Product Officer, Yahoo! India Research and
Development and Gabrielle Benefield, Senior Director of Agile
Development, Yahoo!, Inc.

Over 50% of requirements change during software
development. The Change Control Board makes sure
the that development does not respond to change. As
a result, about 50% of software is never used.
We deliver on time and on budget 100% of the time.
Our waterfall projects are 100% successful. The
customer then says it is not what they wanted 100%
of the time. Our failure rate is 100%. BellSouth
management

© Jeff Sutherland 1993-2007

80% of software sucks

Jim Johnson. The Standish Group International Inc. 2002

Fit to user needs

© Jeff Sutherland 1993-2007

Gartner Portal Project
informal case study (David Norton, 2007)

Modes of FailureModes of Success
Catastrophic Failure (<1%)

"Shelfware"
(20%–25%)

"Teflon" Portal
(Modest Failure)

(30%–35%)

Moderate
Success
(35%–40%)

Unqualified Success
(5%-10%)

Huge Success (<3%)

© Jeff Sutherland 1993-2007

Wicked Problems: Righteous Solutions

Wicked problems have no definitive formulation. Each attempt at creating a solution
changes your understanding of the problem.
Wicked problems have no stopping rule. The problem-solving process ends when
resources are depleted, stakeholders lose interest or political realities change.
Solutions to wicked problems are not true-or-false, but good-or-bad … getting all
stakeholders to agree that a resolution is "good enough" can be a challenge.
There is no immediate or ultimate test of a solution to a wicked problem.
Every implemented solution to a wicked problem has consequences.
Wicked problems don't have a well-described set of potential solutions. Various
stakeholders have differing views of acceptable solutions.
Each wicked problem is essentially unique. Part of the art of dealing with wicked
problems is the art of not knowing too early what type of solution to apply.
Each wicked problem can be considered a symptom of another problem. A wicked
problem is a set of interlocking issues and constraints that change over time,
embedded in a dynamic social context.
The causes of a wicked problem can be explained in numerous ways.
The planner (designer) has no right to be wrong.

Rittel, H and Webber M. Dilemmas in a General Theory of Planning. Policy Sciences, Vol. 4. Elsevier, 1973.
Degrace and Hulet's book, Wicked Problems, Righteous Solutions, Prentice Hall, 1990

© Jeff Sutherland 1993-2007

The Enterprise as a complex
adaptive system

Business entities are examples of complex adaptive
systems.
Modification time of business processes is rapidly
accelerating.
Automating business processes renders parts of the
business in software.
When software modification time exceeds business
modification time, the company cannot meet market
demands.
Sutherland, Jeff and van den Heuvel, Willem-Jan (2002) Developing and integrating
enterprise components and services: Enterprise application integration and complex
adaptive systems. Communications of the ACM 45:10:59-64.

© Jeff Sutherland 1993-2007

Complex Adaptive Behavior

Self organization
No single point of control
Interdisciplinary teams
Emergent behavior
Outcomes emerge with high dependence on relationship and context
Team performance far greater than sum of individuals

J. Sutherland, A. Viktorov, and J. Blount, Adaptive Engineering of Large Software Projects
with Distributed/Outsourced Teams, in International Conference on Complex Systems, Boston,
MA, USA, 2006.

© Jeff Sutherland 1993-2007

Successful delivery on plan is the
root cause of failure.

Time

Features

Contract

Customer
Need

© Jeff Sutherland 1993-2007

Scrum – value driven not plan driven

Empower lean teams to deliver more software earlier
with higher quality.
Demonstrate working features to the customer early
and often so the customer can inspect progress and
prioritize change.
Deliver exactly what the client wants by directly
involving the customer in the development process.
Provide maximum business value to the customer by
responding to changing priorities in real time.

© Jeff Sutherland 1993-2007

Replacing the plan
with adaptive
planning …

© Jeff Sutherland 1993-2007

Local action, inspect and adapt,
forces self-organization

Individual self-organizes work
Team self-organizes around goals
Architecture self-organizes around working code
Product emerges through iterative adaptation
Collaborative approach as opposed to authoritative
approach
Flat organizational structure

© Jeff Sutherland 1993-2007

Google and Scrum

“With the help of an experienced agile leader (Scrum Master,
XP coach…) it was possible to carefully introduce agile
practices into Google - an environment that does not have an
affinity to processes in general.
“Along with these practices came a visibility into the
development status that gave the approach great management
support.
“All this could be done without destroying the great bottom-up
culture that Google prides itself of.”

Mark Striebeck
Google AdWords Project Leader and ScrumMaster

© Jeff Sutherland 1993-2007

Powered by Scrum

AdWords is the “KaChing” machine at Google. It makes most of the money
(2.5B Q3/06) that gives Google its market cap of $147B just behind Chevron
and ahead of Intel. The most profitable software application in the history of
computing is powered by Scrum.

© Jeff Sutherland 1993-2007

Theory: Process
Defined vs. Empirical Process

It is typical to adopt the defined (theoretical)
modeling approach when the underlying
mechanisms by which a process operates are
reasonably well understood. When the process is too
complicated for the defined approach, the empirical
approach is the appropriate choice.
Process Dynamics, Modeling, and Control. Ogunnaike and Ray,
Oxford University Press, 1992

© Jeff Sutherland 1993-2007

Software Development is an
Empirical Process

Ziv's Uncertainty Principle in Software Engineering -
uncertainty is inherent and inevitable in software
development processes and products [Ziv, 1996].

Humphrey's Requirements Uncertainty Principle - for
a new software system, the requirements will not be
completely known until after the users have used it.
Wegner's Lemma - it is not possible to completely
specify an interactive system [Wegner, 1995].

© Jeff Sutherland 1993-2007

Uncertainty demands Empirical
process control

Process

Outputs
• Incremental

product
changes

Controls

Inputs
• Requirements
• Technology
• Team

Adapted from Agile Software Development with
Scrum by Ken Schwaber and Mike Beedle. Courtesy
of Mike Cohn, Mountain Goat Software

© Jeff Sutherland 1993-2007

Bell Labs Report on most productive
project ever: Borland Quattro for
Windows

1,000,000 lines of
C++ code

BWP Industry standard

Time in months 31 >50

Staff 8 >100

Function points
per staff month

77 2

BQW

Jones, Capers. Applied
Software Measurement, Second
Edition. McGraw Hill, 1997.

© Jeff Sutherland 1993-2007

James Coplien. Borland Software Craftsmanship: A
New Look at Process, Quality, and Productivity.
Proceedings of the 5th Annual Borland International
Conference, Orlando, 1994.

One of most remarkable organizations, processes, and development
cultures seen in AT&T Bell Laboratories Pasteur process research project
Project management, product management, QA integral to team, all
making technical contributions
Higher communication saturation than 89% of projects
“Anti-schismogenetic” – no cliques
Highly iterative development
Strong architectural interaction with implementation
More time spent in project team meetings than anything else – several
hours a day
Gerry Weinberg notes that CMM Level 1 and 2 teams need strong
managerial direction. Level 3 paradigm shift is self-directing team. Borland
team was clearly in this category, although not by commonly accepted
criteria.

http://www1.bell-labs.com/user/cope/coplien.tiff.gz

© Jeff Sutherland 1993-2007

Team comments on Quattro
project

“We are satisfied by doing real work.”
“Software is like a plant that grows. You can’t
predict its exact shape, or how big it will
grow.”
“There are no rules for this kind of thing—it’s
never been done before.”

“Evolutionary development is best technically, and it saves time
and money.”
Report of the Defense Science Board Task Force on Military Software. Oct 1987.

© Jeff Sutherland 1993-2007

History of Iterative and Incremental
Development (IID)

1956 – Benington’s stagewise model – USAF SAGE System
1957 – IBM Service Bureau Corp, Project Mercury, IBM Federal
Systems Devision – Gerry Weinberg
1960 – Weinberg teaching IID at IBM Systems Research
Institute
1969 - Earliest published reference to IID:

– Robert Glass. Elementary Level Discussion of
Compiler/Interpreter Writing. ACM Computing Surveys, Mar 1969

Larman, Craig and Basili, Vic. Iterative and Incremental Development: A Brief History. IEEE Computer, June 2003 (Vol. 36,
No. 6) pp. 47-56

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml

© Jeff Sutherland 1993-2007

History of Iterative and Incremental
Development (IID)

1971 – IBM Federal Systems Division
– Mills, Harlan. Top-down programming in Large Systems. In Debugging

Techniques in Large Systems. Prentice Hall, 1971
1972 – TRW uses IID on $100M Army Site Defense software
1975 – First original paper devoted to IID
– Gasili, Vic and Turner, Albert. Iterative Enhancement: A Practical

Technique for Software Development. IEEE Transactions on Software
Engineering. Dec 1975.

1977-1980 – IBM FSD builds NASA Space Shuttle software in
17 iterations over 31 months, averaging 8 weeks per iteration
– Madden and Rone. Design, Development, Integration: Space Shuttle

Flight Software. Communications of the ACM, Sept 1984.

Larman, Craig and Basili, Vic. Iterative and Incremental Development: A Brief History. IEEE Computer, June 2003 (Vol. 36, No. 6) pp.
47-56

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml

© Jeff Sutherland 1993-2007

History of Iterative and Incremental
Development (IID)

1985 – Barry Boehm’s Spiral Model
– Boehm, Barry. A Spiral Model of Software Development and Enhancement.

Proceedings of an International Workshop on Software Process and Software
Environments. March, 1985

1986 – Brooks, Fred. No Silver Bullet. IEEE Computer, April 1987
– Nothing … has so radically changed my own practice, or its effectiveness [as

incremental development].
1993 – First SCRUM at Easel Corporation

1994 – DOD must manage programs using iterative development
– Report of the Defense Science Board Task Force on Acquiring Defense

Software Commercially. June 1994.
1995 – Microsoft IID published

– McCarthy, Jim. Dynamics of Software Development. Microsoft Press, 1995.
1996 – Kruchten. A Rational Development Process. Crosstalk. July.

– Origins of RUP

Larman, Craig and Basili, Vic. Iterative and Incremental Development: A Brief History. IEEE Computer, June 2003 (Vol. 36, No.

6) pp. 47-56

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml

© Jeff Sutherland 1993-2007

History of Iterative and Incremental
Development (IID)

1996 – Kent Beck Chrysler Project
– Origin of XP

1996 – Larman meets with principal author of DD-STD-2167
– David Maibor expressed regret for the creation of the waterfall-based standard.

He had not learned of incremental development at the time and based his
advice on textbooks and consultants advocating the waterfall method. With the
hindsight of iterative experience, he would recommend IID.

1997 – Coad and DeLuca rescue Singapore project
– Origin of Feature-Driven Development

1998 – Standish Group CHAOS Project
– Top reason for massive project failures was waterfall methods. “Research also

indicates that smaller time frames, with delivery of software components early
and often, will increase success rate.

1999 – Publication of extensive DOD failures
– Out of a total cost of $37B for the sample set, 75% of projects failed or were

never used, and only 2% were used without extensive modification. Jarzombek.
The 5th Annual JAWS S3 Proceedings, 1999.

Larman, Craig and Basili, Vic. Iterative and Incremental Development: A Brief History. IEEE Computer, June 2003 (Vol. 36, No.

6) pp. 47-56

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml

© Jeff Sutherland 1993-2007

History of Iterative and Incremental
Development (IID)

2001 – 17 process expert “anarchists” meet at Snow
Bird
– Agile Manifesto initiated 100s of books and papers on agile

development

2001 – MacCormack’s study of key success factors
– MacCormack, Alan. Product-Develoment Practices that Work.

MIT Sloan Management Review 42:2, 2001.

© Jeff Sutherland 1993-2007

Nokia Checklist

You know you are not doing any Agile process if you are not
doing iterative development
You know you do not do iterative development when:
– Iterations are longer than 6 weeks
– Iterations are not timeboxed
– Team tries to finish all specification before programming
– Iteration doesn't result in workable code
– Iterations doesn't include testing

You know you do not use scrum when:
– The team doesn't know who the product owner is
– Your product backlog doesn't contain estimates
– You cannot generate a release burn-down chart and don't know

your velocity
– There is a project manager in the project disrupting the work of the

team

© Jeff Sutherland 1993-2007

Product Owner drives the plan

Vision
Roadmap
Slide deck to evangelize project
Product Backlog
Estimates
Understand velocity of teams
Incorporate technical backlog
Release dates
Manage the GAP

© Jeff Sutherland 1993-2007

Delivering Releases on Time

Product backlog prioritized by business value with
estimates
Product owner knows velocity of teams
Manage the gap between desired state and current
state
– Can we reprioritized the backlog to deliver early release that

captures value?
– Can team increase velocity?
– If not, what can be pulled off the bottom of the product

backlog?
– Can management sponsors provide more resources?

© Jeff Sutherland 1993-2007

Product Owner: Manage the Gap

Desired
State

Actual
State

7/1 9/1

GAP
R1 R2

GAP

© Jeff Sutherland 1993-2007

How do we meet dates with Scrum?

Microsoft TV team from Redmond drinking beer at happy hour
with me at the Avante Hotel in Mountain View …
– “Jeff, we have a question for you. How do you meet fixed dates with

Scrum?”
“Do you have a burndown chart and know your velocity?”
“No.”
“You will never meet a date with Scrum!”

They did not meet the Nokia test for doing Scrum.

© Jeff Sutherland 1993-2007

ScrumMaster – Manage the Burndown

http://www.controlchaos.com/about/burndown.php

© Jeff Sutherland 1993-2007

Sprint in Trouble

Graphic from Kan Mare (2006) Technical Debt and Design Debt.

© Jeff Sutherland 1993-2007

ScrumMaster: managing the burndown,
knowing the velocity

3 2 0 P R B u rn d o w n

0
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

5/9
/20

05

5/1
6/2

00
5

5/2
3/2

00
5

5/3
0/2

00
5

6/6
/20

05

6/1
3/2

00
5

d a te

PR
 c

ou
nt

0
5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0

to
ta

l c
lo

se
d

3 2 0 c u rre n t o p e n 3 2 0 c u rre n t ve rific a t io n
3 2 0 d a ily 'c lo s e d ' 3 2 0 d a ily o p e n
3 2 0 to ta l 'c lo s e d '

© Jeff Sutherland 1993-2007

Toyota Way: Learn by Doing
Fujio Cho, President, 2002

We place the highest value on actual implementation and
taking action. Agile Principle #1

There are many things one doesn’t understand the
therefore, we ask them why don’t you just go ahead and
take action? Agile Principle #3, #11

You realize how little you know and you face your own
failures and redo it again and at the second trial you
realize another mistake … so you can redo it once again.
Agile Principle #11, #12

So by constant improvement … one can rise to the higher
level of practice and knowledge. Agile Principle #3

© Jeff Sutherland 1993-2007

Toyota consulting applied to most
agile U.S. company (industrial sensor
company – 6 month results)

93% reduction in lead time to product product
83% reduction in work-in-progress inventory
91% reduction in finished goods inventory
50% reduction in overtime
83% improvement in productivity

The mindset is the key to transformation. Consulting
help from outside experts is critical in early stage.

© Jeff Sutherland 1993-2007

Published experiences with ”rework”

5%

10%

15%

25%

20%

30%

~25%

~15%

CMMI 1 CMMI 2 CMMI 3 CMMI 4

~10%

35%

40%

45%

50%

~7%

CMMI 5

Part of
development time

Source: Krasner & Houston, CrossTalk, Nov 1998
Diaz & King, CrossTalk, Mar 2002

~50%

© Jeff Sutherland 1993-2007

Scrum applied to CMMI Level 5 company
– 6 month results

10%

20%

a

30%

50%

40%

60%

CMMI 1 CMMI 5

70%

80%

90%

100%

CMMI 5
SCRUM

Project effort Rework

Work

Process focus
CMMI

SCRUM

50 %

50 %

50 %

10 %

9 %

6 %

25 %

4 %

100 %

69 %

35 %

© Jeff Sutherland 1993-2007

Systematic CMMI 5 Analysis
First six months of Scrum

80% reduction in planning cost
40% reduction in defects
50% reduction in rework
100% increase in overall productivity
Systematic decided to change CMMI Level 5 process to make
Scrum the default mode of project management
When waterfall project management is demanded, they are now
contracted for twice the price of Scrum projects
– Required by some defense and healthcare agencies
– Results are lower business value
– Lower customer satisfaction
– Lower quality
– Twice the cost

Sutherland, J., C. Jacobson, et al. (2007). Scrum and CMMI Level 5: A Magic Potion for Code Warriors! Agile 2007, Washington, D.C., IEEE.

© Jeff Sutherland 1993-2007

Following the plan will …
Increase planning costs by 500%
Double the price of the project (at least)
Increase bugs by 166% (at least)
Decrease user satisfaction
Reduce employee morale and increase turnover
May lead to 100% failure rates in terms of meeting customer
needs.

You can stop following the plan. To function like Toyota,
stopping is mandatory. Do it before your competition or you may
be roadkill on the information highway!

© Jeff Sutherland 1993-2007

Questions?

© Jeff Sutherland 1993-2007

Bibliography
Cohn, M. (2004). User Stories Applied : For Agile Software Development,
Addison-Wesley.
Cohn, M. (2005). Agile Estimation and Planning, Addison-Wesley.
Larman, Craig and Basili, Vic. Iterative and Incremental Development: A Brief
History. IEEE Computer, June 2003 (Vol. 36, No. 6) pp. 47-56
Poppendieck, M. and T. Poppendieck (2006). Lean Software Development: An
Implementation Guide, Addison-Wesley.
Schwaber, K. (2004). Agile project management with Scrum. Redmond, Wash.,
Microsoft Press.
Sutherland, J., C. Jacobson, et al. (2007). Scrum and CMMI Level 5: A Magic
Potion for Code Warriors! Agile 2007, Washington, D.C., IEEE.
Sutherland, J. and K. Schwaber (2007). The Scrum Papers: Nuts, Bolts, and
Origins of an Agile Method. Boston, Scrum, Inc.
Takeuchi, H. and I. Nonaka (1986). "The New New Product Development Game."
Harvard Business Review(January-February).
Takeuchi, H. and I. Nonaka (2004). Hitotsubashi on Knowledge Management.
Singapore, John Wiley & Sons (Asia).

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/co/&toc=comp/mags/co/2003/06/r6toc.xml

	The Plan is the Problem!
	Jeff Sutherland background�jeffsutherland.com/scrum
	Plan driven development
	Plan based failure rates
	Unplanned software case study
	How to produce software that sucks …
	80% of software sucks
	Gartner Portal Project �informal case study (David Norton, 2007)
	Wicked Problems: Righteous Solutions
	The Enterprise as a complex adaptive system
	Complex Adaptive Behavior
	Successful delivery on plan is the root cause of failure.
	Scrum – value driven not plan driven
	Local action, inspect and adapt, forces self-organization
	Google and Scrum
	Powered by Scrum
	Theory: Process�Defined vs. Empirical Process
	Software Development is an Empirical Process
	Uncertainty demands Empirical process control
	Bell Labs Report on most productive project ever: Borland Quattro for Windows
	James Coplien. Borland Software Craftsmanship: A New Look at Process, Quality, and Productivity. Proceedings of the 5th Annual
	Team comments on Quattro project
	History of Iterative and Incremental Development (IID)
	History of Iterative and Incremental Development (IID)
	History of Iterative and Incremental Development (IID)
	History of Iterative and Incremental Development (IID)
	History of Iterative and Incremental Development (IID)
	Nokia Checklist
	Product Owner drives the plan
	Delivering Releases on Time
	Product Owner: Manage the Gap
	How do we meet dates with Scrum?
	ScrumMaster – Manage the Burndown
	Sprint in Trouble
	ScrumMaster: managing the burndown, knowing the velocity
	Toyota Way: Learn by Doing�Fujio Cho, President, 2002
	Toyota consulting applied to most agile U.S. company (industrial sensor company – 6 month results)
	Published experiences with ”rework”
	Scrum applied to CMMI Level 5 company �– 6 month results
	Systematic CMMI 5 Analysis�First six months of Scrum
	Following the plan will …
	Bibliography

