Algorithms in a Nutshell

Session 9

Recap Algorithms and SE
3:50-4:20

N
))J'l *
Y Y

ALGORITHMS
IN A NUTSHELL

. " Grorge T Heinwenwiw
O'REILLY Giary Frdfior &8 Sedler




Outline

* Unit testing
— Challenges, specifically for algorithms

— Importance of visualization
* Stress testing

— Performance testing

* Concepts

— Floating point values



Unit Testing

* Given specification for a unit of code, validate
implementation against a set of inputs

I
Input \ Algorithm Actual J
Set Implementation Output

Algorithm

Specifies type of Specification Tells what the
input expected output
should be




Brute Force Approach

 Many algorithms solve problems for which a
Brute Force algorithm exists

— FORD-FULKERSON (Chapter 8)

* Simply execute both algorithms on same data
set(s)
— Assumes you can generate random uniform inputs

— Unlikely that both implementations will share
same defect

* Also compare algorithms to textbook
solutions



Validating algorithm implementations

e Assume algorithm is correct

— How do we validate the implementation?

* |n this book, we had several simple cases
— Chapter 4: Sorting
— Chapter 5: Searching

* Two specific challenges to face

— What if you can only verify output by computing
all possible solutions?

— What if you can’t predict the output in advance?



Validating Graph Algorithms

* How do you validate DIJKSTRA’S ALGORITHM?

— single-source shortest path
— Impossible to compute Brute Force approach

* Rely on examples from text books
* Coding technique

int v = ci->first; int v = ci—->first;

long newLen = dist([u]; int newLen = dist[u];
newlLen += ci->second; newlLen += ci->second;
if (newlen < dist[v]) if (newlLen > 0 && newlLen < dist[v])

Math overflow protection extra check for negative values



Validating AStarSearch (Chapter 7)

 How do you validate heuristic search?
— Heuristics not guaranteed to find answer!

* Relied on Artificial Intelligence literature
— Examples found in books, lecture notes

e Canonical example domains
— Tic Tac Toe for search trees
— The sliding 8-puzzle for game trees

* Overall strategy
— Try to replicate examples from other textbooks



Validating Floating Point Algorithms

* How do you validate imprecise calculations?
* Line Segment intersection

— O(n?) Brute Force Algorithm exists
— Output differs (at strange and inopportune times)

— floating-point values on the order of 101> which
should otherwise be treated as zero

(424.2213883396885,83.64382123041435,430.21898827125784,83.4741301556963)
(424.27530553919314,85.91543442004598,424.2754719964361,79.91543442235498)
(429.8421554463252,85.39816284280639,424.56541286695244,82.54229384177802)



How to discover these segments?

 Randomly generated input sets of 100 line
segments
— Found one set that produced different results

 Manually removed line segments until error
disappeared

— Divide and conquer
— Eventually was able to produce minimal set



Unit Testing Concepts

* Separate Interface from implementation
— algs.model.searchtree.INode (Search Trees)
— algs.model.IBinaryNode (Binary Trees)
 C examples
— Standardize drivers for algorithms
— Code/Sorting/buildPointerBasedInput.c (Sorting)
— Timing/timing.c



Visualization

* GraphViz used extensively throughout ADK

— www.graphviz.org

— Automatically visualize execution of algorithms
— Avoids error-prone by-hand computed examples

* Infrastructure developed

— algs.debug package

— Parallel development: algs.model.searchtree and
algs.model.searchtree.debug



296

Performance Testing

* Infrastructure to time algorithm execution
— Monitor performance time as input size doubles
— Standard approach used throughout book

e Standard machine platforms used throughout
— Dedicated Linux cluster machine (i.e., only user)
— Windows desktop PC (Windows XP)

* Encourage experimentation

— Install ADK and follow instructions for executing
your own experiments



296

Performance Testing Challenge

* RANGE QUERY algorithm proved interesting
— Uses d-dimensional KD-trees (Chapter 9)

— Two interrelated factors (h=number points,
r=number results found)

r=number results found As you apply to higher dimensions,
keeping query box at s/2 will return
fewer and fewer points, which
skews timing results; you actually
need to increase the size of query

n=number initial points




