Algorithms in a Nutshell

Session 8
Computational Geometry
2:50 - 3:40

Outline

* Overview
e Themes
— Divide and Conquer

* Problems

— Line Segment Intersection

Line Segment Intersection

IHPUt: Set of n line segments using Cartesian coordinates

O . Set of k intersection points that describe all line segments that
utput: .
Intersect at these k points.

Quick Question:

How many distinct intersection points exist?

Quick Question

* How many intersection points exist?

-~ N = 7
- ~ "/ :
. N . — I
~ - T
’(r" i o \1 _(%,
- -y e ~ N
T — % -
- - s
e o AN
A ~— N
— o
N . D%
- - "~ e
o
- /- \,
- ‘-3;5‘\ -
— =
ﬁ_ IQ\
e -

n=32
n=256 k=496

Brute Force Intersection

BRUTE FORCE INTERSECTION
} Brute Force
Best Average Worst
o(n?) o(n?) O(n?)

intersections (5)

1. foreachs,ESdo

2. foreachs,&S—{s;}do

3 p = intersection point of s, and s,
4, if (p exists) then record (p, s, 5,)

end

Works best when expected number of intersections k = O(n?)

Doesn’t take advantage of the actual position of lines

Decompose problem

* Divide and conquer

— Essential strategy for dividing a problem into
sub-problems

— Does not seem
applicable

Decompose problem

* But borrow a concept from Calculus

— Consider Infinitesimal slice moving from top
to bottom in a “Sweep”

— If two segments intersect
then at some point they

were neighbors on
sweep line

Decompose problem

* But borrow a concept from Calculus

— Consider Infinitesimal slice moving from top
to bottom in a “Sweep”

— If two segments intersect
then at some point they
were neighbors on
sweep line

Decompose problem

* But borrow a concept from Calculus

— Consider Infinitesimal slice moving from top
to bottom in a “Sweep”

— If two segments intersect
then at some point they

e

e

S, and S, intersect below the sweep line

S, and S, are neighbors but they never intersect...

Line state: Swap Neighbors

e After intersection, neighbors swap
relative position

* Line State ordered left to right at the
sweep point (y-coordinate of sweep line)

Algorithm Outline

* Initialize
— Create Event Queue with interesting initial points
— Each point knows its {upper, lower, intersecting}
— Set LineState to J

* Process queue from top to bottom

— “Handle” each Event Point

Example Execution

Line State Event Queue

Example Execution

Line State Event Queue
B S1-S2
S2

S5

S1 p
S3

Report (0,13) S1,S2

Example Execution

Line State Event Queue

C\
52
S5
®& S1-S2-5S5

S1 p
S3

@

S6 (g \@"»54

Report (0,13) S1,S2

Example Execution

Line State Event Queue
§
S2
S5
51 @) ;6) $1-52-53-S4—-55
e
2>
S6 - 54
Report (0,13) S1,S2

Report (8,7) S3, S4

Example Execution

Line State Event Queue

al

v

S1-S3-S52-54-55

Report (0,13) S1,S2
Report (8,7) S3, 54
Report (6.6,6.3) S2,S3

Example Execution

Report (0,13)
Report (8,7)
Report (6.6,6.3)
Report (10.5,4.5)

$1, 52
S3, 54
S2,S3
S4, S5

Line State

S1-5S3-S52-S55-54

Event Queue

Example Execution

Line State Event Queue

Report (0,13)
Report (8,7)
Report (6.6,6.3)
Report (10.5,4.5)

$1, 52
S3, 54
S2,S3
S4, S5

$1-S3-56-52-S55-54

Example Execution

Line State Event Queue

Report (0,13) S1,S2
Report (8,7) S3, 54
Report (6.6,6.3) S2,S3
Report (10.5,4.5) SA4, S5
Report (0,3) S1, S3,S6

Example Execution

Line State Event Queue

Report (0,13) S1,S2
Report (8,7) S3, S4
Report (6.6,6.3) S2,S3
Report (10.5,4.5) SA4, S5
Report (0,3) S1, S3,S6
Report (10,3) S2,S5, S6

Example Execution

Line State Event Queue

Report (0,13) S1,S2
Report (8,7) S3, 54
Report (6.6,6.3) S2,S3
Report (10.5,4.5) SA4, S5
Report (0,3) S1, S3,S6
Report (10,3) S2,S5, S6
Report (12,3) S4, S6

Example Execution

Line State Event Queue

S5-S52-54

Report (0,13) S1,S2
Report (8,7) S3, 54
Report (6.6,6.3) S2,S3
Report (10.5,4.5) SA4, S5
Report (0,3) S1, S3,S6
Report (10,3) S2,S5, S6
Report (12,3) S4, S6

Example Execution

Line State Event Queue

}

S5-S2

Report (0,13) S1,S2
Report (8,7) S3, 54
Report (6.6,6.3) S2,S3
Report (10.5,4.5) SA4, S5
Report (0,3) S1, S3,S6
Report (10,3) S2,S5, S6
Report (12,3) S4, S6

Example Execution

Line State Event Queue

S5

Report (0,13) S1,S2
Report (8,7) S3, 54
Report (6.6,6.3) S2,S3
Report (10.5,4.5) SA4, S5
Report (0,3) S1, S3,S6
Report (10,3) S2,S5, S6
Report (12,3) S4, S6

Example Execution

Line State Event Queue

Report (0,13) S1,S2
Report (8,7) S3,54
Report (6.6,6.3) S2,S3
Report (10.5,4.5) SA4, S5
Report (0,3) S1, S3,S6
Report (10,3) S2,S5, S6
Report (12,3) S4, S6

Tasks

* Must Sweep Line from top to bottom
— Process each line exactly once
— Sub-task: Represent Line State

* Report Intersections

— Miss no intersection point

— Report each intersection point exactly once
— Consider end points in computation

N

Algorithms in a Nutshell (c) 2009, George Heineman

11

Initial Step: Create Event Queue

52
S5

S1
S3

S6 ﬁ . 54

S

Linked List

2n+k event points in queue. Best performance: O((n+k)?)

S1

Initial Step: Create Event Queue

@
L\Sz

5
& S1-S52-55

S3

%54

S6 @/

Linked List

GetMin: constant time

Contains: We must probe event
gueue to see if point is already
present

If so, merge (52,S5) as
intersecting points

whoops

In Linked List, this is O(n+k)

2n+k event points in queue. Best performance: O((n+k)?2)

Initial Step: Create Event Queue

G
52
S5
S1-52-55

S3

@ S6 g %54

.628453.

Binary Heap
(Java.util.PriorityQueue)

S1

Contains: still O(n+k)

WO+ Q+>+«@

2n+k event points in queue. Best performance: O((n+k)?)

Initial Step: Create Event Queue

12.00,9.00
up:

Event Queue stored as Balanced Binary Tree.
Ordered from top to bottom.

GetMin() and Probe() are O(log (n+k))
Total so far: O((2n+k) * log(n+k)) = O((n+k) * log n)

Does this scale?

Longest path to leaf is 10

Final Task: Handle Event Point

* For each minimum Event Point ep
— Find [left, right] in LineState
— Compute and report these intersections
— Update Line State

* Delete all segments in [left, right]
* Advance Sweep Point
* Re-insert ep.uppers & ep.intersections
— Add to EventQueue new intersections

* But only if they occur below sweep line

Line State Representation

* Balanced Binary Tree used again
— Special Structure: Only leaves contain segments.
— Internal nodes maintain pointers to leaves

— maintenance of LineState is O(log (n+k))

LineSegment Intersection

* Analysis
— Resulting performance: O((n+k) * log n)
— Lots of special cases

* Horizontal Lines, Vertical lines
* Intersecting end points, etc...

* Testing code

— Your basic nightmare...

