Algorithms in a Nutshell

Session 7/
Path Finding in Al
1:50 — 2:40

Algorithms-in-a-Nutshell (c) 2009, George Heineman

Outline

Overview

Search Trees

— BREADTHFIRSTSEARCH, DEPTHFIRSTSEARCH
— ASTAR (A")

Game Trees

— MINIMAX, ALPHABETA

Themes

— Blind search vs. Heuristics

Path Finding in Al

* How to solve a problem when no clear
solution exists?

— Artificial Intelligence (Al)
— Convert problem into a search
* Two common problem classes

— One player game making moves
— Two player games with alternating moves

Search Strategy

* Single player making moves
— Start from initial board state
— Target represents goal state
— Moves transform board state

e Goal

— Find sequence of moves from
initial state to goal state

 Example 8-puzzle

811|3 123

2141|5 8

76 7 6|5

initial goal

Search Space

* Graph-like search space is possible
— Must prevent infinite cycles as search proceeds

* Size of search space can be Very Large
— 8-puzzle only has 362,880 unique states
— Rubik’s cube has 43,252,003,274,489,856,000

811|6 8 |11]6 8 11]6 8 |11]6 8 11]|6 8 11]|6 8 11]6 81116

2145 2 a5 2 5 2 |5 712]|5 71215 7 5
7 6 71ale6 7146 4|6 4 6 4 12|6 4216

8 |11]6 8 |11]6 8 |11]6 8 |11]6
415 4 5 4 715 4 715

Search Tree Approach

* Determine board state representation
* |dentify valid moves given a board state
e Construct graph for search space?

— Can’t. In general, it’s just too big

e Construct Search Tree

— Nodes are valid board states

— Edge between nodes represents the application of
a move

Key decisions

* Must avoid revisiting prior board states
— Maintain closed set of visited board states

— Discard moves that result in a state that has
already been visited

* Must be able to reproduce sequence of moves
from initial board state

— Each board state stores link to its prior state

8-Puzzle Search Tree Example

Start at initial board state

Levels represent number Ly
of moves from initial 7065
state
Light blue arrows m@ NERE m’; .
represent valid moves 8 |2 8 |2
7 6|5 7 6
that create new board
state
: [[] [] []
- SOI'd blue represent move 2 1 3 4 move 5 1 314 move 1 1 3 move 2
winning solution 8 2 8125 8124
7 615 7 6 7 615

Dashed grey lines
represent back links for
history

Strategies for searching Search Tree

* Recall DEPTHFIRSTSEARCH and
BREADTHFIRSTSEARCH

— Both still applicable even though graph never fully
constructed

— We explore graph and expand nodes as necessary
* Seek shortest sequence of moves to solution?
— BREADTHFIRSTSEARCH

* Willing to try moves randomly until solution?

— DEPTHFIRSTSEARCH

— But must fix maximum depth bound to stop search
because graph can be very large

Context: Small Puzzle

* Board state consist of two integers
— Start from an initial board

* Three possible moves
— Add one to left number
— Add one to right number
— If BOTH even, divide both in half
* Goal state is predefined (m,n)
—mandnare>1

search (initial, goal)

182

1. if (initial = goal) then return “Solution”
2 ntagpn - DEPTHFIRSTSEARCH
3. open = new Stack
4' Closed = new Set Best case Average case Worst case
5. insert (open, copy (initial)) O(b*d) O(b9) O(bd)
6. while (open is not empty) Closed
7. n=pop (open) M Explored
8 insert (closgd, n) 0 Open
9. foreach valid move m at n do - Unexplored 0]0
10. next = state when playing m at n -
11. if (closed doesn’t contain next) then 110! 0l 1
12. nextdepth++ N
13. if (next = goal) then return “Solution” 2ot AT EaE FO >
14. if (next.depth < maxDepth) then 777 7O
15. insert (open, next)
16. retum ‘No Soluton” slo) {201 21 (120 21 (7221 7
end

lol o] [la] [le] [2]af2f2]{a]2][0]

DEPTHFIRSTSEARCH

d defines how deep to
search
— Stop searching past this
depth
b defines average
number of available
moves per board state

open is stack
representing state of
search

— Backtrack by “popping”
board states off stack

closed is set of states
that have been visited
— Must support lookup

DEPTHFIRSTS EARCH Stack (L] Backtracking
Best case Average case Worst case
O(b*d) O(bd) O(bd) |
s initial [0l0]
search (Inltlal’ goal) goal maxDepth=3 open @I
1. if (initial = goal) then return “Solution” 7
A _ s
2. Inltlal-depth =0 /// _ (1) afterfirst time through loop
3. open = new Stack e el @
7 // .
4. closed = new Set P open closed: [I]
'd
5. insert (open, copy(initial)) ~ ////
6. while (open is not empty) g (2) after second time through loop
7. n = pop (open) open @ closed: [gIg [oM]
8. insert (closed, n)
9. foreach valid move matn do (3) after third time through loop
10. next = state when playing m at n S
11. if (closed doesn 't contain next) then oven 1] closed g
12. next.depth = n.depth+1
13. if (next = goal) then return “Solution” (4 fourth time through loop, goal found
14. if (next.depth < maxDepth) then open closed: % %
15. insert (open, next) =
16. return “No Solution”
end

closed
explored

om0

open
unexplored

182

188

Small DEPTHFIRSTSEARCH Example

* Goal node: [7]3]
— Why does DFS with depth-bound 12 fail?

ajon
| Jao
5
nogino o olon
JSuo@nn 100 oo
o % G an ﬁj
oogglion] oo oojan ?t“
ooj (3] I nojog oo jor oo o
Jonginc oo Juol oo o [T jocMcofilico
0 G IR G jan@icocol 0 [EE ok ooffonco D
e 09))) B T 9 9 b 9 B0 B 19 £ (19 ¥ B e (9 £ (e B [10 (19 3 B3 510 .1 (o

184

Algorithm Detalil

* Why are duplicate states visited?
— open is a stack and the same state may be inserted

while (!'open.isEmpty()) {
INode n = open.remove () ;
closed.insert (n);

// All successor moves translate into appended OPEN states.

DoublelinkedlList<IMove> moves = n.validMoves() ;
for (Iterator<IMove> i1t = moves.iterator(); i1t.hasNext ();) {
IMove move = it.next();

// Execute move on a copy since we maintain sets of board states
INode successor = n.copy();
move.execute (successor) ;

// If already visited, try another state
if (closed.contains (successor) != null) { continue; |}
if (successor.equals(goal)) { return new Solution (initial, successor); }

if (depth < depthBound) { open.insert (successor); }

}

// No solution.
return new Solution (initial, goal, false);

Small BREADTHFIRSTSEARCH
Example

* Systematic exploration of search tree

— All possible states kK moves away are visited
before states k+1 moves away

— Note distinct structure of search tree

[T T nojon jon@icolc o0 oo ooooiRoo nojon T;‘l

190

BREADTHFIRSTSEARCH

BREADTHFIRSTSEARCH . Queue

d d Efi n es d e pt h Of Sea rC h Best case Average case Worst case
1,3, e
— However, search O(b?) O(b?) O(b?) ey =
’
continues until solution search (initial, goal) . gosl mexDepih=3 open
found or run out of 1. if (initial = goal) then return “Solution” __-~ -
2. open = new Queue o7 (1) after first time through loop
memory 3. closed = new Set el -7 <@ o closed:
b d f 4. insert (open, copy(initial)) - 7 e
e I n es ave ra.ge 5. while (open is not empty) ///// (2) after second time through loop osod
number Of avallable 6. n = head (open) open €01 2I0] (1
r. insert (Closed, n) (3) after third time through loo
moves per boa rd state 8. foreach valid move m atn do o closed:

open o) [

H 9. next = state when playing m at n
open is queue . Py
10. if (closed doesn’t contain next) then (@) in fourth time throu
. igh loop, goal found
re p resenti ng state Of 11. if (next = goal) then return “Solution” closed:
h 12. insert (open, next) open <IT] I oo
searc 13. return “No Solution”

— Ensures all board states k end
moves away are visited
before those k+1 away

closed is set of states
that have been visited wepiored | PIEA WR2EH A2 2 0B

— Must support lookup

closed
explored

om0

Heuristics to the rescue

BREADTHFIRSTSEARCH will find solution should it
exist

— But it may require an incredible amount of resources

DEPTHFIRSTSEARCH may find solution
— But only if bound is properly set

Both methods are “blind” searches

— How do we add knowledge to the search?
— Through heuristics

Heuristics

— Methods that helps solve a problem; rules of thumb;
common sense ideas

Sample heuristic for Small Puzzle

e Produce value that estimates number of
moves to reach solution

public int eval (INode state) ({
SmallPuzzle tp = (SmallPuzzle) state;

// manhattan distance to target]]
int diff = Math.abs(target[0] - tp.s[0]) + Math.abs (target[1l] - tp.s[1]);

// 1f we have gone too far, then DOUBLE the cost, since we have to cut in half
// and then add back. Same for both

if (tp.s[0] > target[0]) { diff *= 2; }

if (tp.s[1] > target[1]) { diff *= 2; }

return diff;

Heuristic at work

e

NS

Poccs

oY Py p— : 25 [scom 112 ‘,I‘,‘ [“l I ‘ [Ifly‘

o |

Handles dead ends
— Pursues more profitable sequences

— Judged by an evaluator that rates each
board state

— Gray board states are still “open” and
available if no better ones are found
e Search power determined entirely
by utility of heuristic

|
SRS [[2]] [e]e]mme] []e]oem

), George Heineman 19

ASTAR (A*) Search

d defines depth of search

b defines average number of
available moves per board
state
open is priority queue
representing state of search
— Extract board state with best
evaluation at each iteration
closed is set of states that
have been visited

— A* may remove states from
closed if their evaluation score is
better

se
O(b*d O(bd) O(bd)
search (|n|t|al, goal) oo
1. |n|t|a|depth =0 ”",- intial [oIo] target IO open <&
2. open =new PriorityQueue ’,—’/ . (Dafter fisttime through loop
3. closed = new Set - - <@ m o
: B Pt pen 0T [mm]
4. insert (open, copy(initial)) ===~
5. while (open is not empty) (2) after second time through loop oo
6. n = minimum (open) open <& EI0 [T 01T [0 [
£ insert (C|OS€d, n) (3) after third time through looj
i 2 v foop closed:
8. if (n =goal) then retum “Solution” -
) pon <2 I M Gl (o] 7o)
9. foreach valid move matn do 2I0]
10. next = state when playing matn (4) in fourth time through loop, goal found
11. next.depth = n.depth+1 closed:
12. if (closed contains next) then pen €M OMM OT01
13. prior = state in closed matching next
14. if (next.score < prior.score) then
15. remove (closed, prior)
16. insert (open, next)
17. else ?
18. insert (open, next) O cosed
19. return “No Solution” ; oxpred o
open
end unexplored Bld BRIk pl2ighl g2 2 B

while

// Remove node with smallest evaluation function and mark closed.
INode n = open.remove () ;
closed.insert (n) ;

ASTAR (A*) Detail

('open.isEmpty()) {

Only check against solution
when removing from open

// Return if goal state reached.

if (n.equals(goal)) { return new Solution (initial, n); }

DoublelLinkedList<IMove> moves = n.validMoves () ;

for (Iterator<IMove> it = moves.iterator(); it.hasNext();) {
IMove move = it.next ()

// Make move and score the new board state.
INode successor = n.copy();
move.execute (successor) ;

// Compute evaluation function to see if we have improved upon already-closed state
scoringFunction.score (successor) ;

// If already visited, see if we are revisiting with lower cost; if so, pull from closed

INode past = closed.contains (successor);
if (past != null) {
if (successor.score() >= past.score()) { continue; }

closed.remove (past) ;

Only searching method we
describe that removes
elements from closed

open.insert (successor); // place into open.

// No solution.
return new Solution (initial, goal, false);

Game Tree

* Represents two player games
— Players alternate turns
— Start from initial game state
— Many states in which either player can win
— Draws are possible (neither player wins)

O’s turn to make a move

Game Tree

* Represents two player games
— Players alternate turns
— Start from initial game state
— Many states in which either player can win
— Draws are possible (neither player wins)

O’s turn to make a move

Game Tree

* Represents two player games
— Players alternate turns
— Start from initial game state
— Many states in which either player can win
— Draws are possible (neither player wins)

O’s turn to make a move

O has six possible moves. Now
It is X’s turn to make a move

Game Tree

* Represents two player games
— Players alternate turns
— Start from initial game state
— Many states in which either player can win
— Draws are possible (neither player wins)

O’s turn to make a move

O has six possible moves. Now
It is X’s turn to make a move

Game Tree Changes in Search

* Goal is no longer a search for a path to known
target

— Given a player’s game state, select a move that has best
probability of leading to a win, securing a draw, or
avoiding a loss

— Infeasible to expand game tree all the way to a solution
 Must evaluate game states
— Take into account perspective of player

* No longer maintain sets of board states
— Make moves (and undo them) while traversing game tree

MINIMAX

* The grandfather algorithm of all two player
strategies

— Book continues with two other enhancements,
namely NEGMAX and ALPHABETA

— We don’t have enough time to cover these today

— Also (honestly) you need to patiently work
through these two algorithms yourself to
understand fully how they work

MINIMAX Search Strategy

Recursively explore first state
to a specific depth, the ply
— Return best move from
available moves
Scoring function evaluates leaf
game states from the

MAX

perspective of the player MAX

making the first move A

— That is the MAX player |
MIN MIN

— The opponent is MIN

Score of interior nodes
— MAX is largest of its children
— MIN is smallest of its children

Sample TicTacToe game state

e Given first state as shown

— Only move that O can make to avoid immediate
loss is upper left corner

— This translates into MinMax search that discovers

that “-2” is the best O can do from its children

[
e
HEEL
I\
T
i
Ot

MINIMAX

Recursive execution
Swap player and
opponent

— To choose proper
moves in line 5

— To choose proper
scoring in lines 9-12

Evaluate all leaf
nodes from original
player

Associate scores with
moves

— Return best one

MiniMax
Best case Average case Worst case

O(b ply) O(bPW) O(b ply)

HH

Recursion

Brute Force
Backtrackin)
= 9

bestMove (s, player, opponent)
1. original = player

3. return move
end

13. return best
end

2. [move,score]= minimax (s, ply, player, opponent)

MAX
3

MIN MIN

MAX MAX MAX MAX
7 B 2 6
minimax (s, ply, player, opponent) /| | /|
1. best = [@ @] MIN MIN MIN MIN MIN
. . 7 2 3 6 2
2 if (ply =0 or no valid moves) then
3. score = evaluate s for original player Game tree is
recursively explored,
4 return [J, score] to a fixed ply depth.
) . MIN nodes select the
5 foreach valid move m for player in state s do smallest of their chid
states.
6. execute move mon s
7 [move, score] = minimax (s, ply—1, opponent, player) MAX nodes select the
largestoftheir chid
8 undo move mon s states.
9. if (player is original) then Leafnodes evaliate
10. if (score > best.score) then best = [m, score] from positon of
original player
11. else
12. if (score < best.score) then best = [m, score]

Code Check

private MoveEvaluation minimax (int ply, IComparator comp, IPlayer player, IPlayer opponent) {
// If no allowed moves or a leaf node, return game state score.
Iterator<IMove> it = player.validMoves (state) .iterator();
if (ply == || !it.hasNext ()) {
return new MoveEvaluation (original.eval (state));

// Try to improve on this lower-bound (based on selector).
MoveEvaluation best = new MoveEvaluation (comp.initialValue());

// Generate game states that result from all valid moves for this player.
while (it.hasNext()) {

IMove move = it.next();

move.execute (state) ;

// Recursively evaluate position. Compute Minimax and swap player and opponent
MoveEvaluation me = minimax (ply-1, comp.opposite(), opponent, player);
move.undo (state) ;

// Select maximum (minimum) of children if we are MAX (MIN)
if (comp.compare (best.score, me.score) < 0) {
best = new MoveEvaluation (move, me.score);
}
}

return best;

MiniMax

* Domain-independent search strategy
* Any two-player game can be used, if...

— Can iterate over all player moves for a game state
— Can design evaluation function that represents

e Success based upon several factors

— Memory usage

— Show execution of TicTacToe tournaments against
random player

ASTAR Exercise

 Add new move type

— If two numbers are both ODD, then compute
difference d, and subtract d/2 from both numbers

— Add suptractralfMove tO the smallpuzzie package

— Modify valiavoves Within SmallPuzzle

e How does heuristic perform with new move?

— What if either (a,b) becomes negative?

* Must take care to
prune away nodes
heading into
negative territory

— unproductive

| 2009, George Heineman 31

