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Outline

e Overview

* Themes
— Adjacency lists vs. adjacency matrix
— Search strategy (breadth first vs. depth first)
— Space vs. Time

* DIJKSTRA’S ALGORITHM

— Implementations for sparse and dense graphs
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Graphs

e Common data structure

— Represents information relationships

Vertices: vl, v2,v3, v4, v5

Edges: (vi,v2), (vi,v3), (v1,v5),
(v2,v4), (v4,v5)
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Graph Representation Options

* Adjacency matrix
— Two dimensional
— Non-zero represents edge
— Find edge by matrix[i][j] index
— Space: O(V?)
* Adjacency lists
— Array of linked lists
— Find edge requires search
— Space: O(V+E)
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Does edge exist between “Boston” and “Providence”?

* Adjacency matrix U S N
Q,o" X Y & ©
— pse hash table. to detgrmlne Boston | 0 o 1o 0 ”
integer i associated with
”BOSton" Hartford 102 0 0 118 0
— Use hash table to determine Hyannis | © ° ° S
integer j associated with New York | ° 118 |0 0 | 180
o Q ”
Providence Providence | 50 0 75 180 | O
_ L A >
Edge exists if edge[i][j] >0 edgel][]
* Adjacency lists node
— Use hash table to determine Hartford | 102 Providence | 50
integer i associated with
7 Boston
Boston” Boston | 102 New York | 118
— Search the linked list vertices|i] Hartford
to see if a node exists whose Hyannis Providence | 75
name is “Providence”
New York
— Edge exists if node found Hartford | 118 Providence | 180
Providence
vertices(] Boston | 50 Hyannis | 75 New York | 180




Normalized Graph Representation

* Assume all vertices are in the range [0, n)

— Enables efficient edge lookup for adjacency matrix

 Assume all requests are normalized

— Avoids hash table lookup

bool isEdge

(int u, int v)

int edgeWeight (int u, int v)

void addEdge

(int u, int v, int w)
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Graph

#¥ertexlist *vertices_
#inkn_
#bool directed_

+iGraphi)

+Graphiint n, bool directed)
+Graphiint )

~Graphi)

+void load(char *file)

+bool directed?)

+ink nurmerticesi)

+bool directed()

+hbool isEdge(int u, int v}

+bool isEdge(int u, ink v, ink &weight)
+int edgeieight(int u, int +)

+void addEdagefint u, ink +)

+void addEdge(int u, int v, int weight)
+vioid removeEdgelint u, ink v)

+WertexList: :const_iteratar begin {ink u)

+Wvertexlist: iconst_iterator end(int u)




Common Graph Problems

* Is there a path from V, to vertex V,?
* What is shortest path from V, to vertex V,?

— In number of edges traversed
— In accumulating edge weights
* What is the shortest path between any two
vertices?
— In accumulating edge weights
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Maze Example

* Problem: Solve a rectangular maze
— “Is there a path from Sto T”
 Mapping a problem to a graph
— ldentify vertices and edges

L L [ L_{I_ 1 PPN
t I—l_ 2 1] 4 : ;I—l_ /11 /3\4 5/9
_I_S JI _I_SP_leH 2. 1 13 6 \7
10 \ /

Vertex represents maze decision point

Edge represents path in maze between decision points



Maze Search
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 Depth-First Strategy
— Assume solution is always one step away
— Never visit the same vertex twice — avoids infinite loops
— Backtrack to earlier decision when you run out of options
* Toimplement
— Must keep track of “active search horizon”
— Must be able to backtrack to revisit earlier decision
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Depth-first search of a graph

Backtracking using recursion

— Each invocation of dfs_visit
visits a new vertex

— Only called on White vertices

Record search progress by
coloring vertices after they
have been visited

— White = Unvisited

— Gray = Visited but haven’t
visited all neighbors

— Black = Visited and have visited
all neighbors

To record search path, use
pred array to store path

If graph is disconnected
— Lines 5-7 completes search

DEPTHFIRST SEARCH "

Best Average Worst

O(V+E) O(V+E) = O(V+E)

E“E Recursion
. Array 1] Backtracking

depthFirstSearch (G, s)
1. foreach vEV do

2. predv]=-1

3. color[v] = White

4. dfs_visit (s) <

_—
~ —
—
-

5.foreach vEV do
6. if (color[v] = White) then
7. dfs_visit (v) N

\

end
\
dfs_visit (u) \\
1. color[u] = Gray \
\
\
2. for each neighbor v of u \

3. if (color[v] = White) then
4. pred[v] =u

5. dfs_visit (v)

6. color[u] = Black

end

@ 2—®
512
0B @

dfs_visit recursively visits the vertices
(1--5) marking each one Gray until it finds
one with no White neighbor vertex (i.e., 5)

As each dfs_visit completes, unvisited
vertices initially passed over are explored
(i.e., 6 was a White neighbor of 2).
Completed vertices are colored Black.

@ o—®
u
\ O 4 3

If the graph is unconnected then some
vertex will be colored White. Continue
to explore these unvisited vertices.

\

O

2

pred[] information records depth-first
forest discovered, shown as arrows

144
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Code Check

e Code check S \
b/ /3\4¢/X‘

(&)

— Debug figure6_10.exe

v
4)>
4)>

— Review code ﬁ \ e/v

. . . . 0 8 €14
* Breakpoint in dfs_visit
— Note stack trace when u=15
0: -1
1: O
dfs visit 2: 1
dfs visit 3: 1
dfs visit 4: 3
dfs visit 5 4
dfs visit 6: 5
dfs visit 7: 6
dfs visit 8: 7
dfs visit 9: 7
df 7v131t 10: 2
dfs searc h 11: 2
ain 12: 3
13: 4
14: 8
15: 9



Implementation Details

* Keep track of “active search horizon”

— The recursion stack of dfs_visit invocations

e Backtrack to revisit earlier decision

void dfs_visit (Graph const &graph, int u, vector<int> &pred, vector<vertexColor>

&color) {
color[ u] = Gray;

// process all neighbors of u.

for (VertexList::const iterator ci = graph.begin(u); ci != graph.end(u); ++ci) {
int v = ci-—>first;
// Explore unvisited vertices immediately and record pred ] . Once
// recursive call ends, backtrack to adjacent vertices.
if (colorx[ v] == White) {
pred v] = u;

dfs visit (graph, v, pred, color);
}
}

color[ u] = Black; // our neighbors are complete; now so are we.

}



Breadth-First Search Strategy

* Systematic exploration of graph

— Visit all vertices that are k edges away from initial
vertex before visiting vertices k+1 edges away

* Only visit unmarked vertices

— Use same coloring scheme as DEPTH-FIRST
SEARCH

e Maintain “active search horizon”

— Use queue to store to-be-visited vertices




Queue Data structure

* Insert elements to the end
e Remove elements from the front

Remove Insert

N




Maze Search

[RiE

}

S

10

* Breadth-First Strategy
— Visit vertices k edges away before visiting those k+1 edges

away

— Never visit the same vertex twice — avoids infinite loops

* Toimplement
— Use queue to keep track of “active search horizon”

1
)

13

14




Maze Search
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* Breadth-First Strategy
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— Visit vertices k edges away before visiting those k+1 edges

away

— Never visit the same vertex twice — avoids infinite loops

* Toimplement

— Use queue to keep track of “active search horizon”
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* Breadth-First Strategy
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— Visit vertices k edges away before visiting those k+1 edges

away

— Never visit the same vertex twice — avoids infinite loops

* Toimplement

— Use queue to keep track of “active search horizon”
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* Breadth-First Strategy
— Visit vertices k edges away before visiting those k+1 edges

away

— Never visit the same vertex twice — avoids infinite loops

* Toimplement
— Use queue to keep track of “active search horizon”
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* Breadth-First Strategy
— Visit vertices k edges away before visiting those k+1 edges

away

— Never visit the same vertex twice — avoids infinite loops

* Toimplement
— Use queue to keep track of “active search horizon”
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* Breadth-First Strategy
— Visit vertices k edges away before visiting those k+1 edges

away

— Never visit the same vertex twice — avoids infinite loops

* Toimplement
— Use queue to keep track of “active search horizon”

1
)
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Breadth-first search of a graph

BREADTHFIRSTSEARC I;.f'

Best Average Worst

Graph

: o ~Iors  Queue
* Systematic owe | owia | owes Aray T
. . . . —0-®
breadthFirstSearch (G, s) Start with all Whit
Exploration of graph e ) s a
@

1
2 pred[v] = —1 Q= . -6
— Will find shortest 3. colorl] = hit
4. color[s] = Gray
After first time @ 3—©®
path from s to every 5 Q= empty Queue throgh loop @ | @
6. enqueue (Q, s) // Q- d
. / = B
node in graph 7
k/ After second time ! 9
— Wi | | |eave 7. while (Q is not empty) do through loop @ ®
. 8.  u=head (Q) a= [2]3] & @ ® @
unreachable Vertlces 9. for each neighbor v of u do
10. if (color[v] is White) then  After third time 1 @—®
o 1. pred[v] = u through loop
unVISIted 12. color[v] = Gray “
13. enqueue (Q, v) Q= D0 6 @

through loop

®
Q= [4]5[6] € z@

end

1 . d Q)
i N O n - re C u rS Ive ::2 C(?IC(])l;“I[euliIe= Black After fourth time 1n3 ®
@

pred[] information ultimately records the
breadth first tree discovered.
Unreachable vertices have pred[] = —1 @
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Code Check

* Code check e \
. ° \ 4 a \\
— Debug figure6_12.exe é, Sl
. | \ 13 <]
— Review code IR
_ .. Bl< Bl< [
* Breakpoint in bfs_visit
- StOp When U - 2 v distl]  pred
— Colored vertices as
shown L
— pred[] info as shown S



Implementation Details

Keep track of
“active search
horizon”

— Queue holds
vertices to be
visited

— Only add “Gray”
nodes to Queue

void bfs search (Graph const &graph, int s, /% dm %/

vector<int> s&dist, vector<int> &pred){ /* out */
// initialize dist and pred. Begin at s
// and mark as Gray since we haven't yet visited its neighbors.
const int n = graph.numVertices();
pred.assign(n, -1);
dist.assign(n, numeric limits<int>::max());
vector<vertexColor> color (n, White);

dist[ s] = 0;
color[ s] = Gray;

queue<int> g;

g.push(s) ;

while (!g.empty()) {
int u = g.front () ;

// Explore neighbors of u to expand the search horizon
for (VertexList::const iterator ci = graph.begin(u);
ci != graph.end(u); ++ci) {
int v = ci-—>first;
if (colorx[ v] == White) {
dist[ v] = dist[ u] +1;
pred v] = u;
color[ vl = Gray;
d.push (v);

g.pop () ;
color[ u] = Black;



Space vs. Time

* Depth-First and Breadth-First both iterate over the
edges for a vertex

— Adjacency List via Iterator
— Adjacency Matrix via double-loop

* Costs change if sparse or dense graph

// Explore neighbors of u to expand // Explore neighbors of u to expand
// search horizon // search horizon
for (VertexList::const iterator ci = graph.begin(u); for (int v = 0; v < n; v++) {
ci != graph.end(u); ++ci) { if (graph.edgel u][ v] == 0) { continue; }

int v = ci—>first;



Searching

Breadth-First and Depth-First can determine
whether path exists between two vertices

— What if you wanted to consider edge weights?
— That is, find shortest path between v, and v,?

* Breadth-first finds path with smallest number of edges

Single-Source Shortest Path

— Edges are now directed and have weights
— DIJKSTRA’S ALGORITHM (1959)



Searching with purpose

* Breadth-First and Depth-First are blind searches
— BFS ignores context as it systematically executes
— DFS selects a direction at random

* Goal: find shortest distance using edge weights

— How do we avoid generating all possible paths?

* Employ Greedy Strategy
— Find shortest distance from v, to all vertices
— Computing for all makes problem easier to solve!



Single-Source Shortest Path

e Goal: find shortest distance from 0 to 3 2 (1
 Key idea 1 . 3
— Compute running “shortest distance” from source (3(0)

to all vertices

— Expand marked region by adding the vertex with
smallest distance (marked in yellow below)

2 2 2 2
D 0 @ @@
B © @ © G- 0 0 ©

dist |o0|e|e|x NEEBE 0l3|5]8 ol3ls]e




Single-Source Shortest Path

e Goal: find shortest distance from 0 to 3 2 (1
 Key idea 1 . 3
— Compute running “shortest distance” from source (3(0)
to all vertices 8

— Expand marked region by adding the vertex with
smallest distance (marked in yellow below)

2 2 2 2
9 c 9 c 9 0 9 0 How can we efficie/?tly
9 3 0 9 3 0 9 3 0 9 3 0 Use a Priority Queue!

dist |o0|e|e|x NEEBE 0l3|5]8 ol3]|s]s




Priority Queue data structure

* Add element with associated numeric priority

— Lower priority numbers imply greater priority

* Retrieve element with lowest priority

If these are the only operations you need, then
you can use an ordinary Binary Heap for efficient
implementation. However, we also need:

* Decrease priority of existing element

— How to avoid O(q) search for element within PQ?



Binary Heap with extra space

 We can use binary heap as PQ here because

— We know maximum size will be n

* decreaseKey operation can be done in O(log q)

— Store additional space, only O(n)

class BinaryHeap {
public:
BinaryHeap (int);
~BinaryHeap ()

bool isEmpty() { return ( n == 0); }
int smallest () ;

void insert (int, int);

void decreaseKey (int, int);

private:
int _n; // number of elements in binary heap
ELEMENT PTR elements; // values in the heap
int * pos; // posl[ i] is index into elements for ith value

} g



DIJKSTRA’S
ALGORITHM

Initialization
— Construct PQ with n vertices

Core step

— Extract vertex u with smallest
distance

— If distance (s,u) + (u,v) < (s,v)
for a neighboring v of u, then
reduce dist[v] and its
location in PQ

How to reproduce actual
shortest path?

— Follow pred[] reference
which is computed by the
algorithm
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Best

OWV+EYlog V)

Dijkstra’s Algorithm PQ 2:3 5 [leonted .] Pricrity

Average Worst

same

singleSourceShortest (G, s)
PQ = new Priority Queue
set distfv]to « for all veG
set pred[v]to —1forall veG
dist[s]=0
foreach veG do
PQ.insert (v, dist[v]);

o gk w0 =

7. while (PQis notempty) do
8. u = getMin (PQ)

9. foreach neighborvofu do 1t iteration: remove 0 and adjust

10. w = weight of edge ( u,v) PQ 012 3 4
11. newlLen = distlu] +w L@’ 0l2 |4
12. if (newLen < dist[v]) then (0,01+(0,1)<(0,1)
13. decreaseKey (PQ, v, newlLen) (0,0)+(0,4)<(0,4)
14. distlv] = newLen 2nd jteration: remove 1 and adjust

15. pred[v]=u PQ 012 3 4
16. end 0[2]|5]|x]|4

5t jteration: remove 3 and done

PQ

01 2 3 4

-

0]2[5]10|4

Directed

@ Graph o queue

OO Aray [3[3]2F] Overflow

Create PQ from neighbors v of
vertex s=0 based on dist[V]

Remove vertex u from PQ with least
distance from s. If path from (s,u) and
(u,v) is shorter than best computed
distance (s,v), adjust dist[v] and PQ.

(0,1)+(1,2)<(0,2)

3r iteration: remove 4 and adjust

PQ 012 3 4
41’2& ol2]5[11]4
(0,4)+(4,3)<(0,3)

4 jteration: remove 2 and adjust
01 2 3 4

PQ
«B o[2[5][10[4

(0,2)+(2,3)<(0,3)
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Code Check

void singleSourceShortest (Graph const &g, int s, /% dm %/
vector<int> &dist, vector<int> s&pred) { /* out */
// initialize dist[] and pred ] arrays. Start with vertex s by setting

// dist[] to 0. Priority Queue PQ contains all v in G.
const int n = g.numVertices();
pred.assign(n, -1);

dist.assign(n, numeric limits<int>::max());

dist[ s] = 0;

BinaryHeap pg(n);

for (int u = 0; u < n; ut++) { pg.insert (u, dist[u]); }

// find vertex in ever shrinking set, V-S, whose dist[] is smallest.

// Recompute potential new paths to update all shortest paths
while (!pg.isEmpty()) {
int u = pg.smallest();

// For neighbors of u, see if newlLen (best path from s->u + weight
// of edge u->v) is better than best path from s->v. If so, update
// in dist[ vl and re-adjust binary heap accordingly. Compute in
// long to avoid overflow error.
for (VertexList::const iterator ci = g.begin(u); ci != g.end(u); ++ci) {
int v = ci-—>first;
long newlen = dist[ u] ;
newlLen += ci->second;
if (newlLen < dist[ v] ) {
pg.decreaseKey (v, newlen) ;
dist[ v] = newLen;
pred v] = u;



Summary

* Rich family of graph algorithms
— BFS and DFS provide search strategies

— Greedy Algorithms (PRIM’s Minimum Spanning
Tree)

— Dynamic Programming
* Algorithm desigher Robert Tarjan said

— “with the right data structure most quadratic
problems can be solved in O(n log n)”
(paraphrased)
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Performance Comparison

 Compare the following performance families
— O( (V+E)*log V) DIJKSTRA’S ALGORITHM

— O(V2+E) DIJKSTRA’S ALGORITHM DG
Sparse: Eis O(V) O (Vlog V) Is smaller than  O(V?) 5000 Ecaos ( 03%)
Break-Even: O(VZ2+V*logV) Isequivalentto O (VZ+V2/logV) 155 Tor ases %)
Eis O(V¥/logV) =0(V?) =0(V?)

Dense: E is O (V2log V) Is larger than ~ O(V?) R
0{v?)

Algorithms in a Nutshell (c) 2009, George Heineman 28



