Algorithms in a Nutshell

Session 6
Graph Algorithms
1:00 -1:50

Outline

- Overview
- Themes
 - Adjacency lists vs. adjacency matrix
 - Search strategy (breadth first vs. depth first)
 - Space vs. Time
- DIJKSTRA'S ALGORITHM
 - Implementations for sparse and dense graphs

Graphs

- Common data structure
 - Represents information relationships

Vertices: v1, v2, v3, v4, v5

Edges: (v1,v2), (v1,v3), (v1,v5),

(v2,v4), (v4,v5)

Graphs

- Common data structure
 - Represents information relationships

Vertices: v1, v2, v3, v4, v5

Edges: (v1,v2), (v1,v3), (v1,v5),

(v2,v4), (v4,v5)

Graph Representation Options

	Boston	Hartford	Hyannis	HENY	ork Provid	Jence
Boston	0	102	0	0	50	
Hartford	102	0	0	118	0	
Hyannis	0	0	0	0	75	
New York	0	118	0	0	180	
Providence	50	0	75	180	0	

- Adjacency matrix
 - Two dimensional
 - Non-zero represents edge
 - Find edge by matrix[i][j] index
 - Space: O(V²)
- Adjacency lists
 - Array of linked lists
 - Find edge requires search
 - Space: O(V+E)

Graph Representation Options

- Adjacency matrix
 - Two dimensional
 - Non-zero represents edge
 - Find edge by matrix[i][j] index
 - Space: $O(V^2)$
- Adjacency lists
 - Array of linked lists
 - Find edge requires search
 - Space: O(V+E)

Does edge exist between "Boston" and "Providence"?

Adjacency matrix

- Use hash table to determine integer i associated with "Boston"
- Use hash table to determine integer j associated with "Providence"
- Edge exists if edge[i][j] > 0
- Adjacency lists
 - Use hash table to determine integer i associated with "Boston"
 - Search the linked list vertices[i] to see if a node exists whose name is "Providence"
 - Edge exists if node found

Normalized Graph Representation

- Assume all vertices are in the range [0, n)
 - Enables efficient edge lookup for adjacency matrix
- Assume all requests are normalized
 - Avoids hash table lookup

```
bool isEdge (int u, int v)
int edgeWeight (int u, int v)
void addEdge (int u, int v, int w)
```

Graph #VertexList *vertices #int n_ #bool directed +Graph() +Graph(int n, bool directed) +Graph(int n) \sim Graph() +void load(char *file) +bool directed() +int numVertices() +bool directed() +bool isEdge(int u, int v) +bool isEdge(int u, int v, int &weight) +int edgeWeight(int u, int v) +void addEdge(int u, int v) +void addEdge(int u, int v, int weight) +void removeEdge(int u, int v) +VertexList::const_iterator_begin (int u) +VertexList::const_iterator end(int u)

Common Graph Problems

- Is there a path from V₀ to vertex V₁?
- What is shortest path from V₀ to vertex V₁?
 - In number of edges traversed
 - In accumulating edge weights
- What is the shortest path between any two vertices?
 - In accumulating edge weights

Maze Example

- Problem: Solve a rectangular maze
 - "Is there a path from S to T"
- Mapping a problem to a graph
 - Identify vertices and edges

Vertex represents maze decision point

Edge represents path in maze between decision points

Depth-First Strategy

- Assume solution is always one step away
- Never visit the same vertex twice avoids infinite loops
- Backtrack to earlier decision when you run out of options

- Must keep track of "active search horizon"
- Must be able to backtrack to revisit earlier decision

Depth-First Strategy

- Assume solution is always one step away
- Never visit the same vertex twice avoids infinite loops
- Backtrack to earlier decision when you run out of options

- Must keep track of "active search horizon"
- Must be able to backtrack to revisit earlier decision

Depth-First Strategy

- Assume solution is always one step away
- Never visit the same vertex twice avoids infinite loops
- Backtrack to earlier decision when you run out of options

- Must keep track of "active search horizon"
- Must be able to backtrack to revisit earlier decision

Depth-First Strategy

- Assume solution is always one step away
- Never visit the same vertex twice avoids infinite loops
- Backtrack to earlier decision when you run out of options

- Must keep track of "active search horizon"
- Must be able to backtrack to revisit earlier decision

Depth-First Strategy

- Assume solution is always one step away
- Never visit the same vertex twice avoids infinite loops
- Backtrack to earlier decision when you run out of options

- Must keep track of "active search horizon"
- Must be able to backtrack to revisit earlier decision

Depth-first search of a graph

- Backtracking using recursion
 - Each invocation of dfs_visit visits a new vertex
 - Only called on White vertices
- Record search progress by coloring vertices after they have been visited
 - White = Unvisited
 - Gray = Visited but haven't visited all neighbors
 - Black = Visited and have visited all neighbors
- To record search path, use pred array to store path
- If graph is disconnected
 - Lines 5-7 completes search

Code Check

- Code check
 - Debug figure6_10.exe
 - Review code
- Breakpoint in dfs_visit
 - Note stack trace when u=15

pred	[]k	results
0:	-1	
1:	0	
2:	1	
3:	1	
4:	3	
5:	4	
6:	5	
7:	6	
8:	7	
9:	7	
10:	2	
11:	2	
12:	3	
13:	4	
14:	8	
15:	9	

Implementation Details

- Keep track of "active search horizon"
 - The recursion stack of dfs_visit invocations
- Backtrack to revisit earlier decision

```
void dfs_visit (Graph const &graph, int u, vector<int> &pred, vector<vertexColor>
&color[ u] = Gray;

// process all neighbors of u.
for (VertexList::const_iterator ci = graph.begin(u); ci != graph.end(u); ++ci) {
   int v = ci->first;

   // Explore unvisited vertices immediately and record pred[]. Once
   // recursive call ends, backtrack to adjacent vertices.
   if (color[ v] == White) {
      pred[ v] = u;
      dfs_visit (graph, v, pred, color);
   }
}

color[ u] = Black; // our neighbors are complete; now so are we.
}

Algorithms in a record.
```

Breadth-First Search Strategy

- Systematic exploration of graph
 - Visit all vertices that are k edges away from initial vertex before visiting vertices k+1 edges away
- Only visit unmarked vertices
 - Use same coloring scheme as DEPTH-FIRST SEARCH
- Maintain "active search horizon"
 - Use <u>queue</u> to store to-be-visited vertices

Queue Data structure

- Insert elements to the end
- Remove elements from the front

Breadth-First Strategy

- Visit vertices k edges away before visiting those k+1 edges away
- Never visit the same vertex twice avoids infinite loops

To implement

Use queue to keep track of "active search horizon"

- Breadth-First Strategy
 - Visit vertices k edges away before visiting those k+1 edges away
 - Never visit the same vertex twice avoids infinite loops
- To implement
 - Use queue to keep track of "active search horizon"

- Breadth-First Strategy
 - Visit vertices k edges away before visiting those k+1 edges away
 - Never visit the same vertex twice avoids infinite loops
- To implement
 - Use queue to keep track of "active search horizon"

- Breadth-First Strategy
 - Visit vertices k edges away before visiting those k+1 edges away
 - Never visit the same vertex twice avoids infinite loops
- To implement
 - Use queue to keep track of "active search horizon"

- Breadth-First Strategy
 - Visit vertices k edges away before visiting those k+1 edges away
 - Never visit the same vertex twice avoids infinite loops
- To implement
 - Use queue to keep track of "active search horizon"

- Breadth-First Strategy
 - Visit vertices k edges away before visiting those k+1 edges away
 - Never visit the same vertex twice avoids infinite loops
- To implement
 - Use queue to keep track of "active search horizon"

- Breadth-First Strategy
 - Visit vertices k edges away before visiting those k+1 edges away
 - Never visit the same vertex twice avoids infinite loops
- To implement
 - Use queue to keep track of "active search horizon"

- Breadth-First Strategy
 - Visit vertices k edges away before visiting those k+1 edges away
 - Never visit the same vertex twice avoids infinite loops
- To implement
 - Use queue to keep track of "active search horizon"

Breadth-first search of a graph

- Systematic
 Exploration of graph
 - Will find shortest
 path from s to every
 node in graph
 - Will leave unreachable vertices unvisited
- Non-recursive

Code Check

- Code check
 - Debug figure6_12.exe
 - Review code
- Breakpoint in bfs_visit
 - Stop when u = 2
 - Colored vertices as shown
 - pred[] info as shown

V	<pre>dist[]</pre>	pred[]		
0	0	-1		
1	1	0		
2	2	1		
3	2	1		
4	INF	-1		
5	2	6		
6	1	0		
7	2	6		
8	1	0		
9	INF	-1		
10	INF	-1		
11	INF	-1		
12	INF	-1		
13	INF	-1		
14	2	8		
15	INF	-1		

Implementation Details

- Keep track of "active search horizon"
 - Queue holds vertices to be visited
 - Only add "Gray" nodes to Queue

```
void bfs search (Graph const &graph, int s,
                                                         /* in */
                 vector<int> &dist, vector<int> &pred){ /* out */
  // initialize dist and pred. Begin at s
 // and mark as Gray since we haven't yet visited its neighbors.
  const int n = graph.numVertices();
  pred.assign(n, -1);
  dist.assign(n, numeric limits<int>::max());
  vector<vertexColor> color (n, White);
  dist[s] = 0;
 color[ s] = Gray;
  queue<int> q;
  q.push(s);
  while (!q.empty()) {
    int u = q.front();
    // Explore neighbors of u to expand the search horizon
    for (VertexList::const iterator ci = graph.begin(u);
         ci != graph.end(u); ++ci) {
      int v = ci->first;
      if (color[v] == White) {
        dist[v] = dist[u] + 1;
        pred[v] = u;
        color[ v] = Gray;
        q.push(v);
    q.pop();
    color[u] = Black;
```

Space vs. Time

- Depth-First and Breadth-First both iterate over the edges for a vertex
 - Adjacency List via Iterator
 - Adjacency Matrix via double-loop
- Costs change if sparse or dense graph

```
// Explore neighbors of u to expand
// search horizon
for (VertexList::const_iterator ci = graph.begin(u);
    ci != graph.end(u); ++ci) {
    int v = ci->first;
    ...
}
```

```
// Explore neighbors of u to expand
// search horizon
for (int v = 0; v < n; v++) {
  if (graph.edge[u][v] == 0) { continue; }
  ...
}</pre>
```

Searching

- Breadth-First and Depth-First can determine whether path exists between two vertices
 - What if you wanted to consider edge weights?
 - That is, find shortest path between v_0 and v_1 ?
 - Breadth-first finds path with smallest number of edges
- Single-Source Shortest Path
 - Edges are now directed and have weights
 - DIJKSTRA'S ALGORITHM (1959)

Searching with purpose

- Breadth-First and Depth-First are blind searches
 - BFS ignores context as it systematically executes
 - DFS selects a direction at random
- Goal: find shortest distance using edge weights
 - How do we avoid generating all possible paths?
- Employ Greedy Strategy
 - Find shortest distance from v_0 to all vertices
 - Computing for all makes problem easier to solve!

Single-Source Shortest Path

- Goal: find shortest distance from 0 to 3
- Key idea
 - Compute running "shortest distance" from source to all vertices
 - Expand marked region by adding the vertex with smallest distance (marked in yellow below)

Single-Source Shortest Path

- Goal: find shortest distance from 0 to 3
- Key idea
 - Compute running "shortest distance" from source to all vertices
 - Expand marked region by adding the vertex with smallest distance (marked in yellow below)

How can we efficiently locate the vertex with smallest distance?

Use a Priority Queue!

Priority Queue data structure

- Add element with associated numeric priority
 - Lower priority numbers imply greater priority
- Retrieve element with lowest priority

If these are the only operations you need, then you can use an ordinary Binary Heap for efficient implementation. However, we also need:

- Decrease priority of existing element
 - How to avoid O(q) search for element within PQ?

Binary Heap with extra space

- We can use binary heap as PQ here because
 - We know maximum size will be n
- decreaseKey operation can be done in O(log q)
 - Store additional space, only O(n)

```
class BinaryHeap {
        public:
         BinaryHeap (int);
         ~BinaryHeap ();
         bool isEmpty() { return ( n == 0); }
         int smallest();
         void insert (int, int);
         void decreaseKey (int, int);
        private:
                                    // number of elements in binary heap
         ELEMENT PTR elements;
                                   // values in the heap
                                     // pos[i] is index into elements for ith value
         int
Algorithms in a maismen
                                       (U) ZUUD, UCUISC HEIHEIHAH
```

DIJKSTRA'S ALGORITHM

- Initialization
 - Construct PQ with n vertices
- Core step
 - Extract vertex u with smallest distance
 - If distance (s,u) + (u,v) ≤ (s,v)
 for a neighboring v of u, then
 reduce dist[v] and its
 location in PQ
- How to reproduce actual shortest path?
 - Follow pred[] reference which is computed by the algorithm

Dijkstra's Algorithm PQ			2 3 7	Weighted Directed	[III]	Priority queue
Best	Average	Worst	1.00	Graph	min	queue
O((V+E)*log V)	same	same		Array	9993	Overflow

singleSourceShortest (G, s)

- 1. PQ = new Priority Queue
- 2. set dist[v] to ∞ for all v∈G
- 3. set pred[v] to −1 for all v∈G
- 4. dist[s] = 0
- 5. foreach v∈G do
- 6. PQ.insert (v, dist[v]);
- 7. while (PQ is not empty) do
- . u = getMin (PQ)
- 9. **foreach** neighbor v of u do
- 10. w = weight of edge(u,v)
- 11. newLen = dist[u] + w
- 12. **if** (newLen < dist[v]) **then**
- 13. decreaseKey (PQ, v, newLen)
- 14. dist[v] = newLen
- 15. pred[v] = u
- 16. end

Create PQ from neighbors \mathbf{v} of vertex \mathbf{s} =0 based on dist[\mathbf{v}]

Remove vertex \mathbf{u} from PQ with least distance from \mathbf{s} . If path from (\mathbf{s},\mathbf{u}) and (\mathbf{u},\mathbf{v}) is shorter than best computed distance (\mathbf{s},\mathbf{v}) , adjust dist $[\mathbf{v}]$ and PQ.

1st iteration: remove 0 and adjust

(0,0)+(0,4)<(0,4)

2nd iteration: remove 1 and adjust

 $\begin{array}{c|ccccc}
0 & 1 & 2 & 3 & 4 \\
\hline
0 & 2 & 5 & \infty & 4
\end{array}$ (0,1)+(1,2)<(0,2)

3rd iteration: remove 4 and adjust

4rth iteration: remove 2 and adjust

(0,2)+(2,3)<(0,3)

 5^{rth} iteration: remove 3 and done

PQ 0 1 2 3 4 0 2 5 10 4

Code Check

```
void singleSourceShortest(Graph const &q, int s,
                                                                                /* in */
                                      vector<int> &dist, vector<int> &pred) { /* out */
             // initialize dist[] and pred[] arrays. Start with vertex s by setting
             // dist[] to 0. Priority Queue PQ contains all v in G.
              const int n = q.numVertices();
             pred.assign(n, -1);
             dist.assign(n, numeric limits<int>::max());
             dist[s] = 0;
              BinaryHeap pq(n);
             for (int u = 0; u < n; u++) { pq.insert (u, dist[u]); }</pre>
             // find vertex in ever shrinking set, V-S, whose dist[] is smallest.
             // Recompute potential new paths to update all shortest paths
             while (!pq.isEmpty()) {
                int u = pq.smallest();
                // For neighbors of u, see if newLen (best path from s->u + weight
                // of edge u->v) is better than best path from s->v. If so, update
                // in dist[v] and re-adjust binary heap accordingly. Compute in
                // long to avoid overflow error.
                for (VertexList::const iterator ci = g.begin(u); ci != g.end(u); ++ci) {
                  int v = ci->first;
                  long newLen = dist[u];
                  newLen += ci->second;
                  if (newLen < dist[v]) {</pre>
                    pq.decreaseKey (v, newLen);
                    dist[v] = newLen;
                    pred[v] = u;
Algorithms in a
```

Summary

- Rich family of graph algorithms
 - BFS and DFS provide search strategies
 - Greedy Algorithms (PRIM's Minimum Spanning Tree)
 - Dynamic Programming
- Algorithm designer Robert Tarjan said
 - "with the right data structure most quadratic problems can be solved in O(n log n)" (paraphrased)

Performance Comparison

Compare the following performance families

$$- O((V+E)*log V)$$

DIJKSTRA'S ALGORITHM

$$- O(V^2 + E)$$

DIJKSTRA'S ALGORITHM DG

Graph Type	O ((V+E)*log V)	Comparison	O(V ² +E)	Example
Sparse: E is O(V)	O (V log V)	Is smaller than	O(V ²)	4096 Vertices 6000 Edges (.03%)
Break-Even: E is O(V²/log V)	$O(V^2 + V^* \log V)$ = $O(V^2)$	Is equivalent to	$O(V^2+V^2/\log V)$ = $O(V^2)$	4096 Vertices 1,398,101 Edges (8%)
Dense: E is	O ($V^2 \log V$)	Is larger than	O(V ²)	4096 Vertices 4,193,280 Edges (25%)

 $O(V^2)$