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Outline

e Data Structures

— Array, Linked List, Queue, Heap, Priority Queue,
Tree, Graph

e Space vs. Time tradeoff
* Approaches

— Divide and conquer
— Greedy algorithm



Common Data Structures

 Basic Structures

Indexed access

\

| |
Structore  Ghyph  Insert Delete  Geti” st Fnd

Array O(n) O(n)
Linked List 0(1) O(n)
Stack =] 0(1) 0(1)
Queue S 0(1) 0(1)
Linked List Stack

insert adds to front
insert adds to tail
remove from any location
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0(1)
O(n)

insert is push
remove is pop
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0(1)
O(n)

O(n)
O(n)

Queue

Insert adds to one end
remove extracts from other end



Dynamic vs. Static sizes

* Fixed size allocation via arrays

idx=4 tail=2 head=6
Stack n=8 Queue n=8
* Increase size by allocating int oldCapacity = table.length;
Entry[] oldMap = table;

more memaory
’e . . int newCapacity = oldCapacity * 2 + 1;
— Don’tincrease by fixed Entry[] newMap = new Entry[newCapacity];
amount, but double

— If you only add linear amount
each time, too inefficient

table = newMap;



Binary Heap

Heap can be stored in array

— Fixed maximum size

— Assumes you only remove elements
_--__

Binary Heap 8 O(logn)  Oflog n)
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Priority Queue

Most implementations provide only

— insert (element, priority)

— getMinimum ()

If you only need these two operations, Binary
Heap can be used

e Often need one more method

— decreaseKey (element, newPriority)

— If you need this one also, you must adjust data structure

Priority Queue iEEE] O(logn)  O(logn) O(log n) O(log n)



Balanced Binary Tree

* |deal dynamic data structure
— No need to know maximum size in advance
— Red/Black Tree implementations quite common
* Avoids worst case behavior
— Which might degenerate to O(n) for all operations

Tree 5{;% O(logn) O(logn) O(logn)
Balanced Binary Tree a{}b O(logn) O(logn) O(logn)



Implementation Tradeoff

* Algorithm designers have developed
innovative data structures

— Fibonacci Heaps
— Skip lists
— Splay trees
* Theoretical improvement is offset by more
complicated implementations
— Also improvement is “amortized” over life of use

— Some operations may be worse than expected



Divide and Conquer

* |ntuition why it works so well
— Look for word in Dictionary

— Each iteration discards half of
remaining words during search

* Number of iterations
— log,n = log n throughout book
— O(log n) family

* Clearly much better than linear
scan of n elements

Words to search
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Divide and Conquer

* Also applies to composed problems
— QUICKSORT

jltluld/m|lo|p|leflw|lalh|r|b]|c|x SortTime(15)

dlelalh|b|c|jlt|lw|ulx|r|m|lo]|p SortTime(6) +
\ || | SortTime(8)

| |
SortTime(15) = TimePartition(15) +SortTime(6) + SortTime(8)

T(n) = O(n) + 2*T(n/2)

T(n) = 2*0O(n) + 4*T(n/4) Continues k=log n times
T(n) = 3*O(n) + 8*T(n/8) T(n) = log n*O(n) + O(n)
T(n) =

k*O(n) + 2K*T(n/2%) T(n) =O(n * log n)

-



Greedy Algorithm

* Goalis to solve problem of size n

— Single-Source Shortest Path from s to all vertices v,
— DIJKSTRA’S Algorithm

* Make locally optimal decision at each stage
— Apply until result yields globally optimal solution

dist dist dist
visited | v visited | v |v visited | v |v v visited | v |v |v v
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Dynamic Programming

Goal is to solve problem of size n

— All Pairs Shortest Path between any vertices (v, vj)
— FLOYD-WARSHALL Algorithm

Solve most constrained problems first 0{@%

— Relax constraints systematically until done

Shortest distance Shortest path can now Shortest path can now Shortest path can now Final result shown below
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Summary

* Various data structures investigated
* Various approaches described

— Divide and conquer
— Greedy algorithm

— Dynamic programming



