Algorithms in a Nutshell

Session 4
Recap Algorithm Themes
11:20-11:40

IN A NUTSHELL

N . Grorge T Heinwenwiw
O'REILLY Giary Frdfior &8 Sedler

Outline

e Data Structures

— Array, Linked List, Queue, Heap, Priority Queue,
Tree, Graph

e Space vs. Time tradeoff
* Approaches

— Divide and conquer
— Greedy algorithm

Common Data Structures

 Basic Structures

Indexed access

\

| |
Structore Ghyph Insert Delete Geti” st Fnd

Array O(n) O(n)
Linked List 0(1) O(n)
Stack =] 0(1) 0(1)
Queue S 0(1) 0(1)
Linked List Stack

insert adds to front
insert adds to tail
remove from any location

Algorithms in a Nutshell

0(1)
O(n)

insert is push
remove is pop

(c) 2009, George T. Heineman

0(1)
O(n)

O(n)
O(n)

Queue

Insert adds to one end
remove extracts from other end

Dynamic vs. Static sizes

* Fixed size allocation via arrays

idx=4 tail=2 head=6
Stack n=8 Queue n=8
* Increase size by allocating int oldCapacity = table.length;
Entry[] oldMap = table;

more memaory
’e . . int newCapacity = oldCapacity * 2 + 1;
— Don’tincrease by fixed Entry[] newMap = new Entry[newCapacity];
amount, but double

— If you only add linear amount
each time, too inefficient

table = newMap;

Binary Heap

Heap can be stored in array

— Fixed maximum size

— Assumes you only remove elements
_--__

Binary Heap 8 O(logn) Oflog n)
EBE]HEJ
16 Level O
10 14 Level 1
02 03 05
r—k—\ f) o
16 | 10 14 02

Algorithms in a Nutshell

(c) 2009, George T. Heineman

Priority Queue

Most implementations provide only

— insert (element, priority)

— getMinimum ()

If you only need these two operations, Binary
Heap can be used

e Often need one more method

— decreaseKey (element, newPriority)

— If you need this one also, you must adjust data structure

Priority Queue iEEE] O(logn) O(logn) O(log n) O(log n)

Balanced Binary Tree

* |deal dynamic data structure
— No need to know maximum size in advance
— Red/Black Tree implementations quite common
* Avoids worst case behavior
— Which might degenerate to O(n) for all operations

Tree 5{;% O(logn) O(logn) O(logn)
Balanced Binary Tree a{}b O(logn) O(logn) O(logn)

Implementation Tradeoff

* Algorithm designers have developed
innovative data structures

— Fibonacci Heaps
— Skip lists
— Splay trees
* Theoretical improvement is offset by more
complicated implementations
— Also improvement is “amortized” over life of use

— Some operations may be worse than expected

Divide and Conquer

* |ntuition why it works so well
— Look for word in Dictionary

— Each iteration discards half of
remaining words during search

* Number of iterations
— log,n = log n throughout book
— O(log n) family

* Clearly much better than linear
scan of n elements

Words to search
1,048,576
524,288
262,144
131,072
65,536
32,768
16,384
8,192
4,096
2,048
1,024

512

256

128

64

32

16

8

4
2
1

Divide and Conquer

* Also applies to composed problems
— QUICKSORT

jltluld/m|lo|p|leflw|lalh|r|b]|c|x SortTime(15)

dlelalh|b|c|jlt|lw|ulx|r|m|lo]|p SortTime(6) +
\ || | SortTime(8)

| |
SortTime(15) = TimePartition(15) +SortTime(6) + SortTime(8)

T(n) = O(n) + 2*T(n/2)

T(n) = 2*0O(n) + 4*T(n/4) Continues k=log n times
T(n) = 3*O(n) + 8*T(n/8) T(n) = log n*O(n) + O(n)
T(n) =

k*O(n) + 2K*T(n/2%) T(n) =O(n * log n)

-

Greedy Algorithm

* Goalis to solve problem of size n

— Single-Source Shortest Path from s to all vertices v,
— DIJKSTRA’S Algorithm

* Make locally optimal decision at each stage
— Apply until result yields globally optimal solution

dist dist dist
visited | v visited | v |v visited | v |v v visited | v |v |v v

165

Dynamic Programming

Goal is to solve problem of size n

— All Pairs Shortest Path between any vertices (v, vj)
— FLOYD-WARSHALL Algorithm

Solve most constrained problems first 0{@%

— Relax constraints systematically until done

Shortest distance Shortest path can now Shortest path can now Shortest path can now Final result shown below
considering just initial edges include vertex 0 include vertices 0 + 1 include vertices 0 + 1 + 2
0123 4 0123 4 0123 4 012 3 4 012 3 4
o0 | 0O o0 | 0O
002 4 002 4 olol 2 X ~ | 4 olo]2]s R4 00/2|5]10/4
1]2]0]3|=|= 1]*]0]3 ==
1]©]0|3|®|® 1103 KN 1K 0(3|/8|4
o0 | 0O o0 | 0O
28 0|51 28 0|51 2/ o|wo]5]1 2|o|=0]|5]1 2 kRl 0|51
o0 | 0O oo e}
0 3:H:0 3810 o 12 3| 8]10/13[0 |12 3|8 10[13/0]12
4 ||| 70 4 | |00 70
4 ||| |7 |0 4 | o | 710 4 NElYa] 7 | O
dist[u][v]

& N
N\ N NA

Summary

* Various data structures investigated
* Various approaches described

— Divide and conquer
— Greedy algorithm

— Dynamic programming

