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Searching Principles

Given a collection C of elements

Existence

— Does C contain a target element t

Retrieval

— Return element in C that matches target element t

Associative lookup

— Return information in C associated with target key k



Unordered Representation

* Must scan each element of C

— Performance O(n)

* Ordered representations are essential
— Phone Book
— Dictionary
— Aisles at Home Depot



BINARY SEARCH

* Represent C using a sorted array of elements

* Apply divide and conquer

— Fastest search algorithm for contiguous array

— Difficult to code without defects!

All < “g” All > “g”
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ix = (low+high)/2

e If “r” isin C it must be in

upper half of the array
Since Ier 2 IlgH

e Each iteration cuts size of

array by about half
* log(n) iterations
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search(A, t)
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end

low=0

high = n-1

while (low < high) do
ix = (low + high)/2
if (t = A[ix]) then

Search (A, 11)
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BINARY SEARCH

return true low ix high
else if (t < A[ix]) then 11 4 8 9| 11| 15| 17
high = ix-1

else low =ix+1

return false

Implementation
— Tight while loop
— Integer arithmetic for | (low+high)/2|
— Returns true when found
Comparison function
— Three value logic: <, =, >

— Avoid multiple comparisons

Best case

O (1)

Average case

O (log n)

Worst case

O (log n)




search(A, t)
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1. low=0
2 n oo BINARY SEARCH
3. while (low < high) do Search (A, 11)
4 ix = (low + high)/2 Best case Average case Worst case
5. if (t = A[ix]) then O (1) O (logn) O (log n)
6 return true low ix high
7 else if (t < A[ix]) then 11 4 8 9f 11| 15| 17
8 high = ix-1
9 else low =ix+1 low ix high
10. return false 11 al sl 9l 11| 15| 17

end

* Implementation
— Tight while loop
— Integer arithmetic for | (low+high)/2|
— Returns true when found
 Comparison function
— Three value logic: <, =, >

— Avoid multiple comparisons
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high = n-1

while (low < high) do
ix = (low + high)/2
if (t = A[ix]) then
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BINARY SEARCH

Best case

O (1)

Average case

O (log n)

Worst case

O (log n)

return true low ix high
else if (t < A[ix]) then 11 4 8 9| 11| 15| 17
high = ix-1
else low =ix+1 low ix high
return false 11 al sl ol 11 ] 15 17
low
. iX
Implementation high
— Tight while loop il E N B L

— Integer arithmetic for | (low+high)/2|

— Returns true when found

Comparison function
— Three value logic: <, =, >

— Avoid multiple comparisons




search(A, t)
1. low=0

2. high=n-1

3. while (low < high) do
4 ix = (low + high)/2
5. if (t = A[ix]) then

6 return true

7 else if (t < A[ix]) then
8 high = ix-1

9 else low =ix+1
10. return false

end

* Implementation
— Tight while loop

Search (A, 11)
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BINARY SEARCH

Worst case

O (log n)

Best case

O (1)

Average case

O (log n)

low iX high
1 4 8 91 11 15 | 17
low ix high
1 4 8 91 11 15 | 17
low
iX
high
1 4 8 9] M1 15 | 17

— Integer arithmetic for | (low+high)/2|

— Returns true when found

 Comparison function

— Three value logic: <, =, >

— Avoid multiple comparisons

What if Search (A, 10)?

low
iX
high

4 8 9|1 11| 15| 17
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BINARY SEARCH

* Implementation

. . BINARY SEARCH
— Tlght Whlle |Oop Best case Average case Worst case D
55 Divide and Conquer
— Integer arithmetic for | 2 ©Ofegn) Oflegn) [F=
. search (A, t) search (A, 11)
(|0W+h|gh)/2J 1 low =0 low ix high
2. high = n-1 __-—firstpass [ 174 8 [0 1115 [17]
— Returns true when found |3 while(low=high doxs-__
4 ix = (low + high)/2 \\\ secondpass [ 1 | 4 | 8 | 9] 11 16 17 ]
5. if (t = Alix]) then N N
6 return true \\ ix
. . N high
. . ; elsiigét:if_ﬂ);]) then thirdpass [ 1 [ 4 [ 8 [ 9] 1g1 (157 17 |
 Comparison function o el -
. 10. return false elements
— Three value logic: <, =, > end

— Avoid multiple comparisons



Code Check

* Show actual running code
— Handout
— Debug example
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BINARY INSERTION SORT

* Use BINARY SEARCH during INSERTION SORT?

INSERTION SORT: 5 Comparisons BINARY INSERTION SORT: 3 Comparisons

insert (A, 6, “7")
insert (A, 6, “7")

[1]4]8]|ol11]1507 [12[13] 6|
[1]4]8]|ol11]1507 [12[13] 6| !
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new

Code Check

void sortPointers (char **ar, int n)
for (int J = 1; j < n; j++) {

® Locate pro per Spot J/-;’; iiirzhofoiijisired target within array */

= j-1, ix, rc, sz;

char *target = ar| j];
— BINARY SEARCH o LB (o e D) |
ix = (low + high)/2;
rc = strcmp (target, ar[ ix]);

e Make room

/* target is less than arf i] */
high = ix - 1;
— Bulk move } else if (rc > 0) {
/* target is greater than ar[ i] */
low = ix + 1;
} else {
/* found the item. */
break;

— }

/** only move i1if not already properly in place */
if (low != 3J) {

sz = (j-low)*sizeof (char *);

memmove (&ar[ low+1l] , &ar[ low], sz);

ar[ low] = target;



Comparisons

e BINARY INSERTION SORT clear winner over

INSERTION SORT

 QUICKSORT still has best performance of
three
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Search types for BINARY SEARCH

e Existence: Does C contain element t
— Only need 3-value comparison function

e Associative lookup: Return info associated with
key k

— Elements in array store reference to associated info

k k k k k k

BOOOBE




new

Code Check

* Code check of example binary search with
arrays

* Implementation a bit awkward

— Constructing the initial array, for instance



Binary Search Weaknesses

* Costly to support frequent insertion and
deletion of elements

* Contiguous storage in an array

e Can an alternate structure address both
concerns?

— Binary Search Tree
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Binary Tree Structure

 Recursive data structure
— Each node may have a left and right child node
— Topmost node in the tree is called the root

class BinaryNode { 7 "
int value; P
BinaryNode left; (s )
BinaryNode  right; A=A

}

[ 10 ::j-ﬁ

class BinaryTree { (2) (6)
BinaryNode root; |

}
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Binary Search Tree Property

* Each node n has a key k

— Often the value of the node is simply the key

* Each node n refers to two binary search trees
— T, IS tree rooted by left child of n
— Tignt IS tree rooted by right child of n

* Keys obey specific ordering
— All keys in T, for n are < k
— All keys in T ... for nare > k @ ©
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Binary Search Tree Issues

* Reasons to use Binary Search Tree
— Input data size is unknown
— Input data is highly dynamic, with significant number
of insertions and deletions
* Problems that may arise

— When a Binary Search Tree is constructed and
modified, it may become unbalanced

@ @ @ Tree looks more like a linked
O (10) (&) list, which leads to O(n)
@ 6 @ @ ® search performance
Tree is fully balanced for (1)

maximum efficiency (12)
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Self-balancing Trees

* Should you choose to use Binary Search Trees

— Choose a balanced tree structure

e Several choices
— Red/Black Trees (standard for JDK)
— AVL Trees (discovered in 1962)
* (Re)balance Tree after insert/delete

— Insertions and Deletions may unbalance tree



Information Structure for Search

 BINARY SEARCH within sorted array
— For all valid indices i,j: if i < j then A[i] < A[j]
* For node n (with key k) in Binary Search Tree

— All keys in left sub-tree of nare < k
— All keys in right sub-tree of n are > k

* These structures enforce a global property

— Can we construct an alternative search structure
that provides efficient search? Yes!
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HASH-BASED SEARCH

e How to search C with n elements

— Break into b smaller search problems

* Possible with carefully designed hash function
— Each element e&C has a key value k=key(e)

— A hash function h=hash(e) uses key value to
compute bin A[h] into which to insert e

hashCode() is the key

FEfement T ey T [ Wesh (for tablesize /) 0 pasncodep % 7is e

hypoplankton 427,589,249 3 hash method

unheavenly 427,589,249 3 You must know the size
of the Hashtable before

upheaval 1,440,257,016 2 you can compute hash()
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HASH-BASED SEARCH

* Collision: Two keys map to same bin A[h]

— Option: Linked lists store elements in each bin

— Option: Open addressing [see blog entry]

n=4 distinct computed key computed Collision Lists Option ] Open Addressing Option ]
elements values, some h=hash(e) index

duplicate into A with b=4 A \ A \

e 5ea] |

distinct bins 0 0|¢€2
€
1 1€
k
e a 2 | EEE) 2 [
e3 kb 0 3 3 e3
k. ! AN AN
€4
2
3 To search for an element, must Note that open addressing does
e s sliahtly di check each one in the chain for impose a global structure. The
This image is slightly different that element’s designated bin above structure is FULL and no

from Figure 5-4 on page 118 more elements can be added



Key points for HASH-BASED
SEARCH

* Load table: O(n)
— Construct hash table

e Search table: O(1)

— With assumptions

— hash function evenly
distributed

— Number of bins
“sufficiently large”

 Load factor a
— Defined as n/b

HASH-BASED
SEﬂR@H Average case Worst case
o (1) O (1) O (n)

loadTable (size, A)
HT = new array of given size
for i=0 to n—-1 do
h = hash(Al[i])
if (HT[h] is empty) then
HT[h] = new Linked List
add AJi] to HT[h]

ok wh =

end

search (HT, t)

h = hash (t)

list = HT[h]

if (list is empty) then
return false

if (list contains t) then
return true

No akwbd=

return false
end

loadTable (3, A)

Al1T4l8l9[11][15][17]

> 9 P 15]
o

\‘18 B 11 ] 17]

HT

~

search (HT, 11)

Al1T4al8l911]15][17]

—> 9 I 15]

M 1 P4
R g
%(—/
explored
elements

HT

/1]
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Hashtable Data

Empirical evaluation: n=213,557
— What happens with different size b?

4,095 54.04

8,191 27.5 9 46 0

16,383 15 2 28 0

32,767 9.5 0 19 349 (1%)
65,535 6.5 0 13 8,190 (12%)
131,071 5 0 10 41,858 (32%)
262,143 3.5 0 7 94,319 (36%)
524,287 3.5 0 7 142,530 (27%)
1,048,575 2.5 0 5 173,912 (16%)

x Weighted: considers only non-empty bins

Algorithms in a Nutshell (c) 2009, George Heineman 23



Hashtable maintenance

* Adding too many objects to a fixed-size
hashtable reduces its efficiency

— Why? Average chain size increases

* Many standard libraries automatically rehash
— Must be an infrequent operation, since O(n)

— Can “amortize” costs away over its lifetime

* Java JDK, GNU STL, SGI STL, ...

— Solid implementations. Don’t reinvent the wheel!



Storage Overhead

* BINARY SEARCH

— No extra memory beyond allocated array
* BINARY TREE SEARCH

— Left and right pointers: O(n) extra space

* HASH-BASED SEARCH

— Array of b bins
— Chained linked lists: O(n) extra space



End notes

 CFP for adding hashing to STL [here]

* STL does not yet have hash tables in standard
— Existing STL implementations do (SGI and GNU)
— Planned as part of TR1 extension



