Algorithms in a Nutshell

"llql

Session 3
Searching

ALGORITHMS
IN A NUTSHELL

................

10:40-11:20

Outline

Searching Principles

Themes

— Divide and Conquer

— Space vs. Time

— Rich Data Structures

Algorithms

— BINARY SEARCH, TREE-BASED, HASH-BASED
Concerns

— Hash functions, Storage overhead

Searching Principles

Given a collection C of elements

Existence

— Does C contain a target element t

Retrieval

— Return element in C that matches target element t

Associative lookup

— Return information in C associated with target key k

Unordered Representation

* Must scan each element of C

— Performance O(n)

* Ordered representations are essential
— Phone Book
— Dictionary
— Aisles at Home Depot

BINARY SEARCH

* Represent C using a sorted array of elements

* Apply divide and conquer

— Fastest search algorithm for contiguous array

— Difficult to code without defects!

All < “g” All > “g”
\ \
(| \
ald|flglp|r W
7 \
low T high

ix = (low+high)/2

e If “r” isin C it must be in

upper half of the array
Since Ier 2 IlgH

e Each iteration cuts size of

array by about half
* log(n) iterations

112

search(A, t)

1
2
3
4
5.
6
7
8
9

10.
end

low=0

high = n-1

while (low < high) do
ix = (low + high)/2
if (t = A[ix]) then

Search (A, 11)

112

BINARY SEARCH

return true low ix high
else if (t < A[ix]) then 11 4 8 9| 11| 15| 17
high = ix-1

else low =ix+1

return false

Implementation
— Tight while loop
— Integer arithmetic for | (low+high)/2|
— Returns true when found
Comparison function
— Three value logic: <, =, >

— Avoid multiple comparisons

Best case

O (1)

Average case

O (log n)

Worst case

O (log n)

search(A, t)

112
1. low=0
2 n oo BINARY SEARCH
3. while (low < high) do Search (A, 11)
4 ix = (low + high)/2 Best case Average case Worst case
5. if (t = A[ix]) then O (1) O (logn) O (log n)
6 return true low ix high
7 else if (t < A[ix]) then 11 4 8 9f 11| 15| 17
8 high = ix-1
9 else low =ix+1 low ix high
10. return false 11 al sl 9l 11| 15| 17

end

* Implementation
— Tight while loop
— Integer arithmetic for | (low+high)/2|
— Returns true when found
 Comparison function
— Three value logic: <, =, >

— Avoid multiple comparisons

search(A, t)

1
2
3
4
5.
6
7
8
9

10.
end

low=0

high = n-1

while (low < high) do
ix = (low + high)/2
if (t = A[ix]) then

Search (A, 11)

112

BINARY SEARCH

Best case

O (1)

Average case

O (log n)

Worst case

O (log n)

return true low ix high
else if (t < A[ix]) then 11 4 8 9| 11| 15| 17
high = ix-1
else low =ix+1 low ix high
return false 11 al sl ol 11] 15 17
low
. iX
Implementation high
— Tight while loop il E N B L

— Integer arithmetic for | (low+high)/2|

— Returns true when found

Comparison function
— Three value logic: <, =, >

— Avoid multiple comparisons

search(A, t)
1. low=0

2. high=n-1

3. while (low < high) do
4 ix = (low + high)/2
5. if (t = A[ix]) then

6 return true

7 else if (t < A[ix]) then
8 high = ix-1

9 else low =ix+1
10. return false

end

* Implementation
— Tight while loop

Search (A, 11)

112

BINARY SEARCH

Worst case

O (log n)

Best case

O (1)

Average case

O (log n)

low iX high
1 4 8 91 11 15 | 17
low ix high
1 4 8 91 11 15 | 17
low
iX
high
1 4 8 9] M1 15 | 17

— Integer arithmetic for | (low+high)/2|

— Returns true when found

 Comparison function

— Three value logic: <, =, >

— Avoid multiple comparisons

What if Search (A, 10)?

low
iX
high

4 8 9|1 11| 15| 17

112

BINARY SEARCH

* Implementation

. . BINARY SEARCH
— Tlght Whlle |Oop Best case Average case Worst case D
55 Divide and Conquer
— Integer arithmetic for | 2 ©Ofegn) Oflegn) [F=
. search (A, t) search (A, 11)
(|0W+h|gh)/2J 1 low =0 low ix high
2. high = n-1 __-—firstpass [174 8 [0 1115 [17]
— Returns true when found |3 while(low=high doxs-__
4 ix = (low + high)/2 \\\ secondpass [1 | 4 | 8 | 9] 11 16 17]
5. if (t = Alix]) then N N
6 return true \\ ix
. . N high
. . ; elsiigét:if_ﬂ);]) then thirdpass [1 [4 [8 [9] 1g1 (157 17 |
 Comparison function o el -
. 10. return false elements
— Three value logic: <, =, > end

— Avoid multiple comparisons

Code Check

* Show actual running code
— Handout
— Debug example

new

BINARY INSERTION SORT

* Use BINARY SEARCH during INSERTION SORT?

INSERTION SORT: 5 Comparisons BINARY INSERTION SORT: 3 Comparisons

insert (A, 6, “7")
insert (A, 6, “7")

[1]4]8]|ol11]1507 [12[13] 6|
[1]4]8]|ol11]1507 [12[13] 6| !
l

|
' Already sorted
Already sorted ,/ value
/" value //
/ /
Vs V4
low ix high

Elements b

/

Insertinto ,/
proper compared Lilsls[o[r]1s] 0 2 5
nd bumped up

spot “‘
[1]4] 7 IEBEIREREL 2] 13] 6 | [1Ta]8]o]11]15] 0 0 1

~
Sorted region extended by one L1fal8{o]11]15]

’ ’ '

1 1 1

new

Code Check

void sortPointers (char **ar, int n)
for (int J = 1; j < n; j++) {

® Locate pro per Spot J/-;’; iiirzhofoiijisired target within array */

= j-1, ix, rc, sz;

char *target = ar| j];
— BINARY SEARCH o LB (o e D) |
ix = (low + high)/2;
rc = strcmp (target, ar[ix]);

e Make room

/* target is less than arf i] */
high = ix - 1;
— Bulk move } else if (rc > 0) {
/* target is greater than ar[i] */
low = ix + 1;
} else {
/* found the item. */
break;

— }

/** only move i1if not already properly in place */
if (low != 3J) {

sz = (j-low)*sizeof (char *);

memmove (&ar[low+1l] , &ar[low], sz);

ar[low] = target;

Comparisons

e BINARY INSERTION SORT clear winner over

INSERTION SORT

 QUICKSORT still has best performance of
three

32

64
128
256
512
1024
2048
4096
8192
16384

Binary Insertion
Sort

0.000004
0.000007
0.000016
0.000039
0.000104
0.000315
0.001
0.0037
0.0139
0.0634

Insertion Sort
0.000003
0.000009

0.00003
0.00011
0.000426
0.0017
0.0072
0.0333
0.1455
0.6414

Quicksort
0.000004
0.000008
0.000016
0.000035
0.000077
0.000171
0.000389
0.000897

0.002
0.0045

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

5000

10000

15000

Binary Insertion
Sort

==*=|Insertion Sort

Quicksort

20000

Search types for BINARY SEARCH

e Existence: Does C contain element t
— Only need 3-value comparison function

e Associative lookup: Return info associated with
key k

— Elements in array store reference to associated info

k k k k k k

BOOOBE

new

Code Check

* Code check of example binary search with
arrays

* Implementation a bit awkward

— Constructing the initial array, for instance

Binary Search Weaknesses

* Costly to support frequent insertion and
deletion of elements

* Contiguous storage in an array

e Can an alternate structure address both
concerns?

— Binary Search Tree

129

Binary Tree Structure

 Recursive data structure
— Each node may have a left and right child node
— Topmost node in the tree is called the root

class BinaryNode { 7 "
int value; P
BinaryNode left; (s)
BinaryNode right; A=A

}

[10 ::j-ﬁ

class BinaryTree { (2) (6)
BinaryNode root; |

}

130

Binary Search Tree Property

* Each node n has a key k

— Often the value of the node is simply the key

* Each node n refers to two binary search trees
— T, IS tree rooted by left child of n
— Tignt IS tree rooted by right child of n

* Keys obey specific ordering
— All keys in T, for n are < k
— All keys in T ... for nare > k @ ©

130

Binary Search Tree Issues

* Reasons to use Binary Search Tree
— Input data size is unknown
— Input data is highly dynamic, with significant number
of insertions and deletions
* Problems that may arise

— When a Binary Search Tree is constructed and
modified, it may become unbalanced

@ @ @ Tree looks more like a linked
O (10) (&) list, which leads to O(n)
@ 6 @ @ ® search performance
Tree is fully balanced for (1)

maximum efficiency (12)

133

Self-balancing Trees

* Should you choose to use Binary Search Trees

— Choose a balanced tree structure

e Several choices
— Red/Black Trees (standard for JDK)
— AVL Trees (discovered in 1962)
* (Re)balance Tree after insert/delete

— Insertions and Deletions may unbalance tree

Information Structure for Search

 BINARY SEARCH within sorted array
— For all valid indices i,j: if i < j then A[i] < A[j]
* For node n (with key k) in Binary Search Tree

— All keys in left sub-tree of nare < k
— All keys in right sub-tree of n are > k

* These structures enforce a global property

— Can we construct an alternative search structure
that provides efficient search? Yes!

118

HASH-BASED SEARCH

e How to search C with n elements

— Break into b smaller search problems

* Possible with carefully designed hash function
— Each element e&C has a key value k=key(e)

— A hash function h=hash(e) uses key value to
compute bin A[h] into which to insert e

hashCode() is the key

FEfement T ey T [Wesh (for tablesize /) 0 pasncodep % 7is e

hypoplankton 427,589,249 3 hash method

unheavenly 427,589,249 3 You must know the size
of the Hashtable before

upheaval 1,440,257,016 2 you can compute hash()

118

HASH-BASED SEARCH

* Collision: Two keys map to same bin A[h]

— Option: Linked lists store elements in each bin

— Option: Open addressing [see blog entry]

n=4 distinct computed key computed Collision Lists Option] Open Addressing Option]
elements values, some h=hash(e) index

duplicate into A with b=4 A \ A \

e 5ea] |

distinct bins 0 0|¢€2
€
1 1€
k
e a 2 | EEE) 2 [
e3 kb 0 3 3 e3
k. ! AN AN
€4
2
3 To search for an element, must Note that open addressing does
e s sliahtly di check each one in the chain for impose a global structure. The
This image is slightly different that element’s designated bin above structure is FULL and no

from Figure 5-4 on page 118 more elements can be added

Key points for HASH-BASED
SEARCH

* Load table: O(n)
— Construct hash table

e Search table: O(1)

— With assumptions

— hash function evenly
distributed

— Number of bins
“sufficiently large”

 Load factor a
— Defined as n/b

HASH-BASED
SEﬂR@H Average case Worst case
o (1) O (1) O (n)

loadTable (size, A)
HT = new array of given size
for i=0 to n—-1 do
h = hash(Al[i])
if (HT[h] is empty) then
HT[h] = new Linked List
add AJi] to HT[h]

ok wh =

end

search (HT, t)

h = hash (t)

list = HT[h]

if (list is empty) then
return false

if (list contains t) then
return true

No akwbd=

return false
end

loadTable (3, A)

Al1T4l8l9[11][15][17]

> 9 P 15]
o

\‘18 B 11] 17]

HT

~

search (HT, 11)

Al1T4al8l911]15][17]

—> 9 I 15]

M 1 P4
R g
%(—/
explored
elements

HT

/1]

126

Hashtable Data

Empirical evaluation: n=213,557
— What happens with different size b?

4,095 54.04

8,191 27.5 9 46 0

16,383 15 2 28 0

32,767 9.5 0 19 349 (1%)
65,535 6.5 0 13 8,190 (12%)
131,071 5 0 10 41,858 (32%)
262,143 3.5 0 7 94,319 (36%)
524,287 3.5 0 7 142,530 (27%)
1,048,575 2.5 0 5 173,912 (16%)

x Weighted: considers only non-empty bins

Algorithms in a Nutshell (c) 2009, George Heineman 23

Hashtable maintenance

* Adding too many objects to a fixed-size
hashtable reduces its efficiency

— Why? Average chain size increases

* Many standard libraries automatically rehash
— Must be an infrequent operation, since O(n)

— Can “amortize” costs away over its lifetime

* Java JDK, GNU STL, SGI STL, ...

— Solid implementations. Don’t reinvent the wheel!

Storage Overhead

* BINARY SEARCH

— No extra memory beyond allocated array
* BINARY TREE SEARCH

— Left and right pointers: O(n) extra space

* HASH-BASED SEARCH

— Array of b bins
— Chained linked lists: O(n) extra space

End notes

 CFP for adding hashing to STL [here]

* STL does not yet have hash tables in standard
— Existing STL implementations do (SGI and GNU)
— Planned as part of TR1 extension

