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What is an Algorithm?

* A deterministic sequence of operations for
solving a problem given a specific input set

* Deterministic — this means it always works,
given the known constraints on the problem

— Produces solution for all possible inputs

* |[nput Set — the (often arbitrary) way in which
a problem instance is represented



Problem: Sort a collection of strings

* Input
— Collection of String S
* Output

— Ordered result

* Assumptions

— Complete ordering between
any two elements of S




Problem Instance Representations

* Array of fixed structured content
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* Array of pointers to content
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* Compact representation
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Common Data Structures

Array
— N dimensional

Linked List
— Doubly-linked

Stack

Queue
— Double-ended queue
— Priority queue

Binary Tree
Binary Heap
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Data structures provide various
ways to representation
information

Note the glyphs used
throughout the book will need
to be consistent here as well

Key operations for each data
structure to be discussed as
needed




INSERTION SORT

* Frame the problem

— Insert each new element into proper location

the collection

remaining elements

in the collection to
F be processed
sorted part of

element being considered next

Algorithm iteratively applies this key operation



INSERTION SORT

* Occasionally all elements must be moved

remaining elements

H in the collection to
& F be processed
sorted part of

the collection element being considered next




INSERTION SORT

* Only need to move elements “higher” than
the one being inserted

remaining elements

H in the collection to
ale ? be processed
sorted part of

the collection element being considered next




INSERTION SORT

e Sometimes the element to be inserted is
greater than all existing elements — no swaps!

remaining elements
in the collection to
. flglh
be processed
sorted part of

the collection element being considered next




INSERTION SORT

e Sometimes the element to be inserted is
greater than all existing elements — no swaps!

DONE

sorted part of
the collection
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INSERTION SORT

oo Array

—
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sort (A)

1. fori=1ton-1do
2. insert (A, i, A[i])
end

insert (A, pos, value)
1. i=pos-1

2. while (i = 0 and A[i] > value) then
3. Afi+1] = A[i]

4 i=i-1

5. Ali+1]=value

end

insert (A, 6, “7")
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sort (A)

1. fori=1ton-1do
2. insert (A, i, A[i])
end

insert (A, pos, value)

1.i=pos—1

2. while (i = 0 and A[i] > value) then
3. A[i+1] = A[i]

4. i=i-1
5. A[i+1]=value
end
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insert (A, 6, “7”)
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Code Check

 Show actual running code
— Handout
— Debug example



Performance of INSERTION SORT

* As sorting algorithms go, how efficient is
INSERTION SORT?

— Is it the fastest algorithm? [NO]
— How does it compare with other algorithms?

* Difficult to answer without a theoretic model
— independent of programming language
— Independent of computer hardware



Performance of Algorithms

e Use standard “Big O” notation

— Let T(n) be time for algorithm to perform on an
average problem instance of size n

— How does T(n) grow in proportion to increasing n?

 Example Problem
— Given n integers, find the largest integer
— Expect that T(2n) = 2* T(n)

* Find performance family that most closely
matches behavior of algorithm



Performance Analysis

e Linear or O(n)

— As problem size is multiplied by 2, the time to
complete the problem “should be” multiplied by 2

— Holds true for any constant multiplicative factor

* How to capture this concept?

— Once n is “sufficiently large”, there is some constant ¢
such that t(n) < c*n

— Not an estimate but a firm upper bound

o_n”n

* |n practice, “c” is never computed, though its
existence is guaranteed

— Depends upon hardware platform, language, etc...



Functional Families

* You already know this concept from algebra

and 4x?—3*x+170 are both “quadratic”
formulae

— Distinctive shape

— Highest exponent
IS most important

—In “long run” they o
behave similarly el
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Performance of INSERTION SORT

* Average Case

— Given random permutation of n elements, each
element is (on average) n/3 positions from proper
location

312 20 Average =8/5=1.6=5/3




Performance of INSERTION SORT

* insert(A, pos, value) is invoked n—1 times
— On average, while loop invoked n/3 times

* Quick estimate = (n—-1)*(n/3) = %n?-n/3
— The critical factor is the highest exponent
— %n?—-n/3 is O(n?) sort (A)

 INSERTION SORT is not linear ;%"

2. insert (A, i, A[i])

— It is Quadratic end
— As problem size is multiplied by ‘l"sﬁrt‘A' P value)
. . i=pos—
k=21 the tlme tO Complete the 2. while (i = 0 and A[i] > value) then
problem is multiplied by k?=4 3. Ali+1] = Ali
4. i=i-1

5. A[i+1]=value
end



Rating Performance of Algorithm

e Best Case

— Problem instances for which algorithm computes
answer most efficiently

* Average Case

— Typical random problem instance. Identifies the
expected performance of the algorithm

e Worst Case

— Unusual problem instances that force algorithm to
work harder and be less efficient
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insert (A, pos, value)

end

1
2
3.
4
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i =pos—1

while (i = 0 and A[i] > value) then
Ali+1] = Ali]
i=i-1

Ali+1]=value
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Algorithm Pattern Format

Name
Synopsis
Context
Forces
Solution
Consequences
Analysis

descriptive name

what it is designed to do
“sweet spot” for algorithm
implementation issues
actual code for algorithm
advantages/disadvantages

show performance



sort (A)

1. fori=1ton-1do
2. insert (A, i, Ali])
end

insert (A, pos, value)
1. i=pos—-1

2. while (i = 0 and A[i] > value) then
3. Ai+1] = A[i]

4 i=i-1

5. A[i+1]=value

end

void sortPointers (char **ar, int n) {
int j;
for(j=1;j<n;j++) {
inti=j-1;
char *value = ar[j];
while (i >= 0 && strcmp(ar[i], value)> 0) {
ar[i+1] = arJi];
I--,

}

ar[i+1] = value;
}
}

* Key ldeas

— While locating proper
location, move up
those in the way

— Simple pointer swap

* Implementation

— No need for separate
method calls

— Assume pairwise swap
is efficient

— Can work with generic
compare method
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Rating Performance of Algorithm

Analyze the standard “Big O” notation

— Consider how well algorithm performs on

problem instances of size n

Key families include:
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Simplified “Big O” notation

 We use O(...) notation a bit informally
— For proper academic use, we should use ©(...)

— In academic use
e O(...) means upper bound
e (J(...) means lower bound
* O(...) declares both a tight upper and lower bound

* Reason?
— Simpler presentation
— Common ‘shorthand’ usage in industry



Summary

e Algorithm introductions
— INSERTION SORT

e Pattern Format

* Analysis tools
— “Big O” notation



