Journeyman

Programmer

Programming Without Fear
Best Practices for New and Existing Software

Speaker

Gil Broza helps
organizations, teams and
individuals implement high-
performance Agile principles
and practices. His coaching
and training clients — over
1,000 professionals in 20
companies — have delighted
their customers, shipped
working software on time,
increased their productivity
and decimated their software
defects.

Beyond teaching, Gil helps
people overcome limiting
habits, fears of change, blind
spots and outdated beliefs,
and reach higher levels of
performance, confidence and
accomplishment.

Who Should Attend

This seminar is designed for
software practitioners,
programmers, and designers.
It is best suited to moderately
experienced programmers,
typically with 2-10 years of
software development
experience.

This seminar is a production of
the Greater Boston Chapter of
the ACM

When: November 13 & 14, 2010
Where: MIT Building E51,Cambridge, MA
Cost: $495 through October 13

$545 October 14 through October 31
$595 after Nov. 1 through Nov. 10
$695 after Nov. 10

Writing new code is one of the joys of programming. Modifying
existing code - legacy code - is often one of the nightmares of
programming. Unfortunately, you will spend more time modifying
existing code than writing new code.

Modifying existing code often results in Whac-A-Mole Programming

- you make a change in one part of the code, and a problem crops up in

another place. You fix that problem and two more pop up. You quickly

find yourself trapped in debug hell!

There is a better way - a sane approach to dealing with both new code

and legacy code. A framework for bringing order to code chaos, making

changes to existing code that are actually improvements. This seminar
provides a powerful approach to developing and modifying code.

If you’ve been programming professionally even just a couple of years,

you’ve likely noticed that:

*Fixing bugs can take anywhere from a few minutes to a few days - or
even longer! - and is even less fun in code written by other people.

*The larger a feature gets, the longer it takes to enhance or maintain
(and the scarier it gets to do so).

*However elegant, clear or clever your code appeared when you first
wrote it, when you revisit it a year later you shudder (or scratch your
head).

®Code-level documentation, even when it exists, somehow never gives
you enough information.

*Even “tested” code breaks where you least expect it to.

Only a decade ago this was accepted wisdom about our profession. But
it doesn't have to be this way!

In this Legacy Code Without Fear seminar, you will learn reliable,
sustainable and enjoyable software development practices which you
can immediately put to use. These techniques, first popularized in
Extreme Programming (XP), have been proven, refined and extended
for more than a decade. By using them you will produce working code
faster, increase its quality, and reduce technical debt — the demon that
snarls later development. After this seminar you will be able to:

®Develop simple, clear, tested code faster than you ever did

®Practice modern techniques such as test-driven development and
refactoring

*Evolve object-oriented software with tests’ guidance
®Unit-test the tough cases
... And have the skills needed to stop dreading legacy code!

Details and registration: www.gbcacm.org

Journeyman Program

GBC/ACM is implementing
a program to meet the needs
of Journeyman Programmers.
This seminar is the first in a
series that deal with real
world issues encountered by
mid-career software
development professionals.

Journeyman Programmers

Journeyman comes from the
world of guilds and crafts,
where workers were
classified as apprentice,
Jjourneyman, or master. An
apprentice was the lowest
rung, someone who was
being trained. An apprentice
required close supervision on
most tasks, and could do little
by themselves.

A master was an expert in
his craft, qualified to do
everything, supervised
journeymen, and often
worked independently.

The journeyman was in the
middle. They had mastered
the basics of the craft and
were able to work with
minimal supervision.
However, they still required
some direction, were
developing expertise and
knowledge, and were not
ready to work independently.

Loosely defined, a
Journeyman Programmer is
someone with 2-10 years of
industry experience. They
have mastered the basics of
coding, and can do
productive work. However,
they have not mastered the
big picture, are still learning,
and can improve their skills
in many areas.

	Page 1

