
Russell Doty

Red Hat

disclaimer
 This presentation does not constitute advice or legal

advice.

 It represents my personal observations and insights.

 I’m not speaking for Red Hat.

 If you have questions, seek legal advice.

 If you are tempted to follow my suggestions blindly,
seek professional help!

 The goal is to help you get started in your own
personal journey with Open Source software.

What’s in it for me? - Fun
 Work on something interesting

 Do the parts you want to do

 Access to the entire project

 Learn! Tools, technologies, disciplines,
skills

 Control your own destiny

 Contribute to something bigger than you

 Make a difference

 Associate with some of the brightest people on the
planet

What’s in it for me? - Profit
 “My resume is on Google”

 This is the code I’ve written

 These are the things I’ve designed

 These are the problems I’ve solved

 These are the people I’ve helped

 These are the complex systems I’ve
contributed to

 This is where I’ve done the entire
software lifecycle

 This is how I interact with people

 It’s public. It’s good. It’s me.

What is Open Source?
Open Source Proprietary

 Source code available

 Can be used for any purpose

 Can be modified

 Can be freely redistributed

 Under an Open Source
license

 Not public domain

 Generally binary only

 Source code restricted

 Controlled by owner

 Only owner can make
changes

 Owner can set terms of use

 Generally can’t be
redistributed

 Generally can’t be modified

Richard Stallman: Four Freedoms
for Free Software
 Freedom to run the program

for any purpose

 Freedom to study how the program
works and adapt it to your needs

 Freedom to redistribute copies so
you can help your neighbor

 Freedom to improve the program and release your
modifications to the public

Open Source License Differences
Changes Returned No Changes Returned

 All changes must be returned
to the community as a pre-
requisite for redistribution

 Example: GPL

 Changes do not have to be
returned to the community as
a pre-requisite for
redistribution

 Example: BSD

Note: seek legal advice if you have
any questions on licensing

Changing/Improving Software
Proprietary Open Source

 The owner can change it

 Only the owner

 Can change it in any way at
any time

 Can refuse to change it!

 Can discontinue it

 No recourse

 The upstream maintainer can
change it

 Distributions can change it

 You can change it

 You can hire or convince
someone to change it

 Anyone can change it!

 AND

 No one is forced to accept
changes

Rule #1 for Open Source:
No one has to accept your changes
 You have the right to make changes

 You have the obligation to make the changes available
under certain conditions

 You do not have the power to make anyone accept
your changes

 No matter how important it is to you

 You have to persuade people to accept your changes

 This acceptance based on influence and participation,
not command and control

How does Open Source work?
 Projects

 Communities

 Maintainers, Contributors, and Participants

 Upstream/Downstream/Users

Open Source Projects
 Projects are the building blocks of Open Source

 A unit of software that can be installed to perform a task
or function

 Examples: Evolution, The GIMP, Libre Office, Linux
kernel

 Three Legs of an Open Source Project

 Source Code Control repository

 Web Site

 Mailing List & irc channel

Open Source Community
 Community – the group of people supporting a project

 Maintainers

 Contributors
 Code

 Test Cases

 Documentation

 Packaging

 Testing

 Community Work (web site, community voice, etc.)

 Users
 Provide use support, bug reports,

Community
Participation is

Voluntary

Streams
 Upstream

 The person, organization, or group which maintains &
enhances a project. Final say on what is included in the
official project.

 Downstream

 An organization or mechanism for integrating and
delivering applications and modules

 Debian, Red Hat, SuSE, Canonical, etc.

 Users

 People or organizations consuming software

Roles
 Maintainer or Upstream Maintainer

 Commit access to repository

 Final say about what goes into the official project

 Committer
 Commit access to repository

 Contributor
 Contributes – code, documentation, testing, support, etc.

 Supporter
 Engaged but doesn’t directly contribute

 Consumer or User
 Uses the software without contributing

“Push it Upstream”
 The process of getting changes accepted into a

project

 Push it Upstream is not:

 Slap an open source license on
some code

 Throw it up on SourceForge

 Demand that a project accept it

We will tell you how to get changes accepted after covering how to make them

Mechanics of Open Source
Components Process

 Web sites

 Source Code Repositories

 Mailing Lists

 Patch Submission

 Project Specific Procedures &
Processes

 Find out how the Project
works

 Develop Code

 Release under proper license

 Push the code upstream

 Maintain the code

Web Sites
Core of Project

 Overview

 Features

 Download

 Documentation

 Plans/Schedule

 Bug Reporting

Source Code Repositories
Git, SVN, CVS, etc.

 Source Code

 History of Changes

 Versions

 Configuration

 Checkin/Checkout

 Branching

 Merging

 Access Control

You need to learn to use the source code control system

Mailing Lists
Primary Vehicle for Work Using the Mail List

 Questions

 Discussions

 Proposed Changes

 Feedback

 Patches

 ACK/NAK

 Archives

 Flame wars…

 Join the project mail list

 Search the Archives

 Follow the project mail list

 Learn protocol, conventions
& personalities of the list

 Contribute to the list

 Ask questions on the list

 Review patches

 Submit patches

Project Processes & Guidelines
 Learn how this project works

 Project Web site is a great place to start

 Differs from project to project

 Follow the process

 Even if you don’t like it

 Let’s look at LibreOffice as an example:

Developing Code
 Not going to say much – you should know what you are

doing here

 Follow the guidelines of the project
 Language

 Formatting (white space & tabs matter)

 Conventions, variable naming, etc.

 Test cases

 Testing

 Base on latest upstream version

 Release early / Release often!

Packaging Code
 Diffs

 Small, self contained

 Reviewer should understand in 5-10 minutes

 Bi-sectable

 Applies cleanly

 Include Explanation

 In-line in email (not attached)

 Goal is to obtain review and feedback

 Make it easy for reviewer – or they will move on!

Gaining Upstream Acceptance
 Submit patchsets on mailing list

 Follow up quickly on questions and feedback

 Make suggested changes
 Unless compelling reason not to

 Need to get ACKs
 And no NAKs

 Stay positive and proactive

 Remember: you have to justify acceptance –
upstream doesn’t have to justify rejection

 Play by the rules or be ignored

Gaining Upstream Acceptance

Remember: you have to justify
acceptance – upstream doesn’t
have to justify rejection

Notes on Feedback
 There is a stereotype that Open Source is a bunch of

Alpha Geeks with Asperger’s Syndrome and no social
skills
 There is a kernel of truth to this…

 Consider:
 Debate is good – for learning and making progress

 Directness or Bluntness is considered a virtue

 Many maintainers are pressed for time

 Maintainers reluctant to invest time in people unless
they believe there will be benefit and return

 Reputation and Influence are earned

More on Feedback
 Don’t take it personally

 Feedback is against your code – not against you

 You get feedback because someone cared enough to
spend the time; listen to what they have to say

 Much of the debate is valuable and you learn a lot

 However:
 There are jerks out there

 If a project is dominated by jerks, find another project
 Life is too short to waste dealing with jerks

 Don’t be too sensitive / Don’t put up with too much crap

Feedback…
NAK

Code poorly structured. Needs indenting and white
space. Variable names not meaningful. Fails at 2pi; needs
input validation. Needs better and more robust error
handling.

Consider using Heimdall-Riemann for better
performance.

Feedback 2
Who do you think you are, wasting our time with this
drivel. This code is such crap you must be a total moron.
Get off our mailing list loser and climb back under that
rock in your mother’s basement.

Feedback 3
ACK.

Committed to repository, commit as34gcd878ddlefy.

Please register yourself in the maintainers file.

Finding a Project/Community
 What are you interested in?

 What projects are in this area?

 How active is the project?

 Who are the key players?

 What is the interaction style?

 What is the general feel of the project?

 Is it something you think you can contribute to?

 Note: expertise is something you build, not something
you have to start with.

Joining a Project/Community
 Read the Web site/follow the mail list & irc

 Check out the code and get familiar with it

 Look for starter tasks:

 Bug triage

 Simple bug fixes

 Code cleanup/refactoring

 Documentation

 Test cases

 Review patches on the mailing list

How to Succeed/How to Fail
Succeed Fail

 Join the community &
Contribute

 Offer changes of value

 Package Patches for Review

 Respond to Feedback

 Make suggested changes

 Work with the community

 RTFM

 Listen!

 Doesn’t match project

 Patch Bombs

 Code doesn’t build

 Code doesn’t work

 Don’t listen to reviewers

 Approach community with an
attitude

 Demand your changes be
accepted

Your Code is Accepted! Now What?
 Celebrate!

 Let the world know

 Look for feedback from people using it
 Praise – bask in it!

 Bugs – fix ‘em

 Valid RFEs – consider them

 Whining – ignore

 Maintain
 You brought it into the world; your responsibility

 Enhance! What are you going to do next?

Go Forth and Benefit!
 Are you having fun?

 Yes – keep going!

 No – re-evaluate

 Build your reputation

 Build your online presence

 Look for more opportunities to participate
 Gatherings, hackathons, meetups

 Mercenary? Look for ways to monetize

 Mentor

 Be ready for incoming opportunities

